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摘 要

目前在神经科学和机器学习领域中的一个重大的挑战是如何正确地理解人类大脑的工作

方式，其中对大脑中思想、记忆和情感等功能的研究将促进包括科学、医学、教育等领域的

发展。功能性神经影像作为一种成像技术能够用来表示测量到的神经活动，其主要思想是利

用这些影像数据来揭示认知过程。事实上，借助这些影像数据，我们不仅能够了解人类大脑

区域的功能，而且能够研究这些区域所代表的具体信息以及该信息是如何编码的。神经活动

可以从不同层面进行分析，其中最关键的步骤是了解不同的认知任务之间的相似性（或差异

性），进而建立认知模型来分析神经活动，这能够帮助我们增加对人脑的认知并促进精神疾病

治疗的发展。

过去十五年来，人们在研究人类神经活动解码方面取得了一些重大的进展，然而，仍然

有几个长期存在的挑战，其中包括多被试者数据的功能校准、有判别性的特征的选择、无监

督相似性分析以及用于预测神经活动的监督模型的生成等问题。本文提出新的方法来分析不

同层次和应用中的认知过程，主要贡献可概括如下:

(1) 本文提出了两种功能校准技术，即无监督和监督方法。首先，本文提出深度超校准

（Deep Hyperalignment, DHA）方法作为功能校准的新型无监督方法。DHA采用深度

核函数，包括一个多层神经网络，它可以实现任意非线性函数，而且它使用秩为m的

奇异值分解（rank-m Singular Value Decomposition, SVD）和随机梯度下降（Stochastic

Gradient Descent, SGD）进行优化。此外，当把训练好的 DHA模型运用到新的被试者

数据上时，不需要使用训练数据。因此，DHA在大型数据集上的运行时间较少。作为

一个有监督的可行方法，局部判别超校准（Local Discriminant Hyperalignment, LDHA）

方法通过将局部判别分析（Local Discriminate Analysis, LDA）的思想融入到典型相关

分析（Canonical Correlation Analysis, CCA）中来提高超校准的性能。事实上，局部性

的概念是基于训练集中的刺激类别（类别标签）来定义的，该方法首先为每个类别的

刺激生成两个集合，即作为类内邻域的最近同类刺激集合和作为类间邻域的不同类

别刺激集合，然后我们最大化类内邻域之间的相关性并且使得类间邻域之间的相关

性接近于零，以此来产生更好的超校准的解。最后，我们发现在二分类问题上 DHA

具有较好的性能，然而在多分类问题上 LDHA的性能更好。
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(2) 本文提出了新的特征分析技术。所提出的方法为每个刺激选择大脑图像的一个快照

而不是分析整个时间序列。经典方法仅仅从体素空间中提取特征，而本文所提出的

方法在解码神经活动时可以选择时间序列的一个子集，实际上，我们可以通过在平

滑后的设计矩阵中查找局部最大值来选择这些快照。最后，本文提出两种学习方法。

事实上，可以使用无监督学习和监督学习两种方法来分析提取的特征。为了应用无监

督学习，本论文提出了一种集群集成方法，在该方法中，神经活动之间的相似性或距

离可以跨被试者进行比较。对于监督学习方法，本文提出了基于 ℓ1正则化的支持向

量机（Support Vector Machine , SVM）二分类器的 Bagging技术，在该技术中每个分

类器由每个大脑解剖区域中的神经活动生成。这种方法的主要贡献在于其可以减少

功能性磁共振成像（functional Magnetic Resonance Imaging, fMRI）数据集的稀疏性。

(3) 本文提出了深度表征相似性分析（Deep Representational Similarity Analysis, DRSA）方

法来进行相似性分析。DRSA使用深度核函数把非线性神经活动转换到线性嵌入空间

中去，然后在该空间中评估映射后的特征之间的相似性（或距离）。此外，为了在不

同类别的刺激的相关性和协方差之间取得平衡，该方法使用了一个新的正则化项。由

于 DRSA采用基于梯度的优化方法，因此评估高维神经影像数据（如全脑图像）的

时间效率较高。

(4) 此外，本文还提出了一种新的监督学习技术。首先，本文提出不平衡 AdaBoost二分

类（Imbalance AdaBoost Binary Classification, IABC）方法作为不平衡二分类学习的一

种新技术，该种方法适合于一对多分类分析。事实上为了提高预测性能，IABC使用

监督随机抽样和惩罚值，其中惩罚值通过不同类别之间的相关性计算得到。随后通

过使用纠错输出编（Error-Correcting Output Codes, ECOC）方法对 IABC进行扩展以

解决多分类问题。

对 20 种不同的真实神经影像数据集进行的实验研究证实，所提出的方法的性能优于其

它经典和前沿算法。除了论文中的理论和实证研究之外，我们还创建了一个基于图形用户界

面（Graphical User Interface, GUI）的工具箱使得研究易于重现并向公众开放，该工具箱可以

运行包括本文提出的方法在内的基于任务的 fMRI图像分析方法的标准流程，目前该工具箱

已在 https://easyfmri.github.io上公开。此外，我们还提供了一个数据仓库用于共享本

文所使用的数据集，该仓库位于 https://easyfmridata.github.io。

关键词： 脑影像分析，深度监督功能校准，深度表征相似性分析，不平衡分类，集成

学习。
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ABSTRACT

One of themost significant challenges in both neuroscience andmachine learning is comprehend-

ing how the human brain works. A better understanding of the brain–as the provenance of thoughts,

memories, and emotions–expedites the development of society, including science, medicine, edu-

cation, etc. As an imaging technology, functional Neuroimaging can be employed as a proxy for

measuring the neural activation. The main idea is utilizing these measurements of neural activities

to shed light on cognitive processes. Indeed, these images enable us to ask what information is rep-

resented in a region of the human brain and how that information is encoded, instead of asking what

is a region’s function. The neural activities can be analyzed at different levels, but a crucial step is

knowing what the similarities (or differences) between distractive cognitive tasks are and then creat-

ing cognitive models to analyze the neural activities. It is like a spotlight that allows us to increase

our knowledge related to the human brain and facilitate treatment of mental disease.

The past decade and a half have seen some promising advances in the development of approaches

for decoding human neural activities. However, there are still several long-standing challenges,

including functional alignment of multi-subject data, selecting information-rich features, similarity

analysis by using unsupervised techniques and generating supervised models for predicting the neural

activities. In this thesis, we development novel approaches in order to analyze the cognitive process

in different levels and applications. The primary contributions can be summarized as follows:

(1) We introduce two techniques for functional alignment, i.e., unsupervised and supervised

approaches. First, Deep Hyperalignment (DHA) is developed as a novel unsupervised ap-

proach for functional alignment. DHA employs a deep kernel function, including a multi-

layer neural network, which can separately implement any nonlinear function. Furthermore,

DHA uses rank-m SVD and Stochastic Gradient Descent (SGD) for optimization. Conse-

quently, DHA generates low-runtime on large datasets, and the training data is not referenced

when DHA computes the functional alignment for a new subject. As a supervised alterna-

tive, Local Discriminant Hyperalignment (LDHA) method is introduced by incorporating

the idea of Local Discriminate Analysis (LDA) into CCA for improving the performance
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of the hyperalignment solution. In fact, the idea of locality is defined based on the stimuli

categories (class labels) in the train-set, where the proposed method firstly generates two

sets for each category of stimuli, i.e., the set of nearest homogeneous stimuli as within-class

neighborhoods and the set of stimuli from distinct categories as between-class neighbor-

hoods. Then, these two sets are used to provide a better HA solution, where the correla-

tion between the within-class neighborhoods is maximized, and also the correlation among

between-class neighborhoods approaches to near zero. Finally, we illustrate that while DHA

can improve the performance of binary analysis, LDHAdepicts better performance formulti-

class datasets.

(2) We propose new feature analysis techniques. Indeed, the proposedmethod selects a snapshot

of brain image for each stimulus rather than analyzing whole of the time series. While the

classical methods just can extract features from voxel space, the proposed method selects a

subset of time-points for decoding the neural codes. In fact, these snapshots are selected by

finding local maximums in the smoothed version of the design matrix. Finally, we propose

two learning approaches. Indeed, extracted features can be analyzed by using both unsuper-

vised learning and supervised learning. This thesis proposed a cluster ensemble approach in

order to apply unsupervised learning, where similarities or distances between neural activi-

ties can be compared across subjects. As the supervised alternative, we develop a bagging

technique by using binary ℓ1-regularized SVM classifiers, where they are generated by uti-

lizing each of neural activities in the level of anatomical regions. The main contribution of

this method is that it can decrease the sparsity of fMRI datasets.

(3) We developDeepRepresentational SimilarityAnalysis (DRSA) for similarity analysis. DRSA

employs a deep kernel function, which transforms nonlinear neural activities into a linear em-

bedded space and then evaluates the similarities (or distances) between the mapped features

in that space. Moreover, it employs a new regularization term that can make a tread-off

between correlation and covariance of different categories of stimuli. Since DRSA utilizes

gradient-based optimization approaches, it is time efficient for evaluating high-dimensional

Neuroimaging data, such as whole-brain images.

(4) We also introduce novel supervised learning techniques. First, Imbalance AdaBoost Binary

Classification (IABC) is proposed as a novel technique for binary imbalance-classification
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learning, where it is well-suited for one-vs-all classification analysis. Indeed, IABC uses

a supervised random sampling and penalty values, which are calculated by the correlation

between different classes, for improving the performance of prediction. After that, we extend

IABC for the multi-class problems, by utilizing Error-Correcting Output Codes (ECOC)

method.

Experimental studies on 20 different real-world Neuroimaging datasets confirm that the proposed

methods achieve superior performance to other classical and state-of-the-art algorithms. Besides the

theories and the empirical studies in the thesis, we alsomake our research easily reproducible and open

to the public. We have created a GUI-based toolbox for running the standard pipeline of analyzing

task-based fMRI images, including the proposed methods in this thesis, that is available at https:

//easyfmri.github.io. Moreover, we have also prepared a data repository for sharing employed

datasets in this thesis. This repository is available at https://easyfmridata.github.io.

Keywords: Neuroimaging analysis, deep and supervised functional alignment, deep repre-

sentational similarity analysis, imbalance classification, ensemble learning.
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Chapter 1. Introduction

One of the most significant challenges in our century is comprehending how the human brain

works [1]. As an interdisciplinary field of study, computational neuroscience can break neural codes

by employing different concepts from the mathematics, physics, psychology, psychiatry, and machine

learning. In this thesis, we focus on developing modern machine learning approaches for analyzing

the neural activities. We first present the current challenges for decoding the human brain in this

section and then introduce novel techniques for improving this procedure in the rest of thesis.

1.1 How to measure the neural activities?

The neural activities can be analyzed at different levels, but a crucial step is knowing what the

similarities (or differences) between distractive cognitive tasks are. In order to measure neural ac-

tivities, different modalities of measurement can be utilized, including Event-Related Optical Sig-

nal (EROS), Positron Emission Tomography (PET), Single-Photon Emission Computed Tomography

(SPECT), Near-Infrared Spectroscopy (NIRS), magnetoencephalography (MEG), electrocorticogra-

phy (ECoG), electroencephalography (EEG), functional Magnetic Resonance Imaging (fMRI) [1, 2].

Like most of the previous studies [1–7], this thesis will focus on fMRI images, where this technique

measures neural activity by employing the Blood-Oxygen-Level-Dependent (BOLD) contrast as a

proxy for neural activation. The main idea is utilizing these measurements of neural activities to shed

light on cognitive processes. Indeed, fMRI enables us to ask what information is represented in a

region of the human brain and how that information is encoded, instead of asking what a region’s

function is [1]. There are two primary reasons for using fMRI technology to break the neural codes.

Firstly, it is a non-invasive imaging technique [2, 5]. In comparison with other non-invasive brain

imaging techniques, it also has unprecedented spatiotemporal resolution with no known side effects

[1].
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Figure 1.1 An example of representational space, where three visual stimuli are observed and depicted as three

vectors with 3-dimensions.

1.2 Representational Space

Neural activities are analyzed in different forms, including graph structures, continuous signals,

component-based representation, etc. In fMRI datasets, neural activities are usually in the form of

voxels (volume elements in brain images). The core concept that underlies the human brain decoding

is the high-dimensional and big data-representational space [4]. For instance, fMRI responses for a

subject, including six time-points and 1000 voxels in the Region of Interests (ROIs), must be defined

by a vector in a 6000-dimensional space. Indeed, the brain neural activities for each subject are

considered as a vector in the neural representational space [1]. In other words, representational space

for all subjects can be numerically defined by a matrix in which each column is a local pattern feature

(i.e., all time points belong to a unique voxel) and each row denotes a response vector related to an

individual simulation. Figure 1.1 illustrates an example of a representational space, where three visual

stimuli are observed and depicted as three vectors with 3-dimensions. The primary advantage of using

the concept of representational space is that we can generalize the applications of machine learning

methods across different modalities of measurement [1, 2, 5].

1.3 Taxonomy of brain decoding methods

As Figure 1.2 depicted, brain patterns in the task-based fMRI datasets can be extracted and de-

coded by applying machine learning techniques, i.e., Hyperalignment (HA), Feature Analysis, Rep-

resentational Similarity Analysis (RSA), Multivariate Pattern (MVP) classification, and Stimulus-

Model-based Encoding and Decoding (SMED) [1, 4, 8, 9]. In this thesis, we consider that all datasets

are preprocessed. We will explain different stages of preprocessing in the Appendix.

2



Nanjing University of Aeronautics and Astronautics

Preprocessing
and

ROI design

Functional
Alignment

Feature
Analysis

Stimulus-Model-
based Encoding and 

Decoding

Representational 
Similarity
Analysis

Multivariate 
Pattern 

Classification

 Methods

Cognitive
Model

 Output Input

d1

Class 1

d2

Class 2

Figure 1.2 Pipeline of analyzing neural activities

1.3.1 Functional Alignment

The multi-subject fMRI analysis is a challenging problem in the human brain decoding [4, 6,

9–14]. In fact, multi-subject fMRI images must be aligned across subjects in order to take between-

subject variability into account. There are technically twomain alignmentmethods, including anatom-

ical alignment and functional alignment, which can work in unison. However, anatomical alignment

can limitedly improve the accuracy because the size, shape and anatomical location of functional loci

differ across subjects [6, 13–15]. As Figure 1.3 depicted, functional alignment explores to align the

fMRI images across subjects precisely. Here, we are looking for a common /or shared space, where

the correlation between within-class stimuli will be maximized, and the between-classes neural activi-

ties have significant distances in comparison with each other. In supervised learning, the shared space

is generated by the training-set and then will be used for mapping neural activities in the testing-set

[9].

As the widely used functional alignment method [4, 6, 9, 11–14], Hyperalignment (HA) [6] is

an ‘anatomy free’ functional alignment method, which can be mathematically formulated as a multi-

view representational learning problems [2, 4, 5, 11]. Original HA does not work in a very high

dimensional space [9]. In order to extend HA into the real-world problems, Xu et al. developed the

Regularized Hyperalignment (RHA) by utilizing an EM algorithm to seek the regularized optimum

parameters iteratively [11]. Further, Chen et al. developed Singular Value Decomposition Hyper-

alignment (SVDHA), which firstly provides dimensionality reduction by SVD, and then HA aligns

the functional responses in the reduced space [12]. In another study, Chen et al. introduced Shared

3
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Response Model (SRM), which is technically equivalent to Probabilistic CCA [9]. In addition, Gun-

tupalli et al. developed SearchLight (SL) model, which is actually an ensemble of quasi-CCAmodels

fits on patches of the brain images [15]. Lorbert et al. illustrated the limitation of HA methods on

the linear representation of fMRI responses. They also proposed Kernel Hyperalignment (KHA) as

a nonlinear alternative in an embedding space for solving the HA limitation [4]. Although KHA

can solve the nonlinearity and high-dimensionality problems, its performance is limited by the fixed

employed kernel function [13]. As another nonlinear HA method, Chen et al. recently developed

Convolutional Autoencoder (CAE) for whole-brain functional alignment. Indeed, this method refor-

mulates the SRM as a multi-view autoencoder [5] and then uses the standard SL analysis [15] in order

to improve the stability and robustness of the generated classification (cognitive) model [16]. Since

CAE simultaneously employs SRM and SL, its time complexity is so high [13]. In a nutshell, there

are four main challenges in previous HA methods for calculating accurate functional alignments, i.e.,

nonlinearity [4, 13, 16], high-dimensionality [9, 12, 13], using a large number of subjects [13, 17],

and supervised learning [14, 18].
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1.3.2 Feature Analysis

Since most of fMRI datasets are high-dimensional, noisy, and sparse, some studies employed

feature selection or extraction methods. Neural activities can be selected in two levels, i.e., voxels, or

time points.

As the first group, some techniques project features of raw voxels to an embedded space, where

the mapped features are information-rich, linear, etc. The component-based approaches such as Prin-

cipal Component Analysis (PCA), Independent Component Analysis (ICA), or Linear Discriminant

Analysis (LDA) are the most prevalent techniques in this stage [8, 19, 20]. As another alternative,

SearchLight methods select features by analyzing the histogram of neuroimaging data [7, 15]. In-

deed, there are two categories of SearchLight-based approaches, i.e., information-based technique,

and spatial-resolution-based methods. While the information-based approach is only looking for the

voxels with the highest-intensity, the spatial-resolution-based techniques consider the position of se-

lected voxels [7]. Indeed, this thesis also presents a new approach for selecting features based on the

anatomical structure of the human brain. While neural activities from any region (related, or irrele-

vant) are selected by using the component-based methods, the anatomical-based approach employs

spatial information for selecting features.

The next group of methods focused on selecting a subset of time points rather than using the
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An MVP classification analysis begins with dividing the data into independent training and test
data sets (Figure 2). The decision rules that determine the confines of each class of neural response
vectors are developed on training data. The border between sectors for different conditions is called
a decision surface. The validity of the classifier is then tested on the independent test data. For
valid generalization testing, the test data must play no role in the development of the classifier,
including data preprocessing (Kriegeskorte et al. 2009). Each test data response vector is then
classified as another exemplar of the condition associated with the sector in which it is located.

Classifier accuracy is the percentage of test vectors that are correctly classified. A more revealing
assessment of classifier performance is afforded by examining the confusion matrix. A confusion
matrix presents the frequencies for all classifications of each experimental condition, including the
details about misclassifications. Examination of misclassifications adds information about which
conditions are most distinct and which are more similar. This information is analyzed using
additional methods in RSA (see next section). Examination of classification accuracy for each
condition separately can alert the investigator to whether average accuracy is really dependent on
a small number of conditions, rather than an accurate reflection of performance across all or most
conditions. Thus, average classification accuracy is a useful metric but discards information that
can be discovered by examining the classification confusion matrix. Confusion matrices are shown
in Figure 3 for two category perception experiments (Haxby et al. 2011; Connolly et al. 2012a,b).
From the first experiment, on the perception of faces and objects, the confusion matrix reveals
that if misclassified, faces are classified as other faces and objects as other objects. Moreover,
the classifier cannot distinguish female from male faces. From the second experiment, on the
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Figure 1.5 An example of Multivariate Pattern (MVP) classification [1]

whole of time series. Pioneer studies employed the component-based approaches such as PCA [21]

and ICA [22] to select the subset of time points. In this thesis, we also present a new approach by using

the design matrix for selecting time points with the highest probability of visualizing neural activities

of different stimuli. As Figure 1.4 illustrates, we analyze the Hemodynamic Response Function (HRF)

signal related to each stimulus and then select the time point in the local maximum, where this time

point includes a snapshot of the neuroimaging data with the highest probability of demonstrating

efficient neural activities corresponding to that stimulus.

1.3.3 Multivariate Pattern (MVP)

Multivariate Pattern (MVP) classification is a conjunction between neuroscience and computer

science, which can extract and decode brain patterns by applying the classification methods [23]. In

fact, it can predict patterns of neural activities associated with different cognitive states [24, 25] and

also can define decision surfaces to distinguish different stimuli for decoding the brain and under-

standing how it works [1, 26]. Further, MVP classification can enable us to understand how brain

stores and processes distinctive stimuli. Moreover, MVP classification uses machine learning algo-

rithms to classify response patterns, associating each neural response with an experimental condition.
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Pattern classification involves defining sectors in the neural representational space in which all re-

sponse vectors represent the same class of information, such as a stimulus category [1], an attended

stimulus [8], or a cognitive state [24, 25]. It can also be used to find novel treatments for mental

diseases or even to create a new generation of the user interface.

As Figure 1.5 depicted, an MVP classification analysis firstly divides the data into independent

training and testing datasets. Then, the decision rules that determine the confines of each class of

neural response vectors are developed on the training data. The border between sectors for different

conditions is called a decision surface. The validity of the classifier is then tested on the independent

test data. For valid generalization testing, the test data must play no role in the development of the

classifier, including data preprocessing. Each test data response vector is then classified as another

exemplar of the condition associated with the sector in which it is located [1].

Classifier accuracy is the percentage of test vectors that are correctly classified. Amore revealing

assessment of classifier performance is afforded by examining the confusion matrix. A confusion

matrix presents the frequencies for all classifications of each experimental condition, including the

details about misclassifications. Examination of misclassifications adds information about which

conditions are most distinct and which are more similar. This information is analyzed using additional

methods in RSA.

1.3.4 Representational Similarity Analysis (RSA)

As one of the fundamental approaches in fMRI analysis, Representational Similarity Analysis

(RSA) [27] evaluates the similarities (or distances) between distractive cognitive tasks. As Figure 1.6

illustrated, RSA examines the structure of representations within a representational space regarding

distances between response vectors. Such as clustering analysis in machine learning, the complete set

of distances among all pairs of response vectors is known as the dissimilarity matrix (DSM). Figure

1.7 shows an example of DSM matrix. Whereas MVP classification analyzes whether the vectors

for different conditions are clearly distinct, RSA analyzes how they are related to each other. This

approach confers several advantages. First, RSA can reveal that representations in different brain

areas differ even if MVP classification is equivalent in those areas [27, 28]. Second, by converting the

locations of response vectors from a set of feature coordinates to a set of distances between vectors,

the geometry of the representational space is now in a format that is not dependent on the feature

7
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Representational similarity analysis examines the patterns of distances between vectors in the high-dimensional vector space. Measures
of angular similarity such as cosine and Pearson product-moment correlation are standard measures that are most sensitive to the
relative contributions of feature dimensions. These similarity measures are transformed into dissimilarities by subtracting them from 1.
Another standard measure of the distance between vectors is Euclidean distance, which is more sensitive to overall differences in vector
length or magnitude.

Investigation of the similarity of neural representations from fMRI data dates back to an early
paper by Edelman et al. (1998), which was the first to use multidimensional scaling to visualize the
representational space for visual objects. Two groups reanalyzed data from an early MVP classifi-
cation study on the distributed representation of faces and objects (Haxby et al. 2001; reanalyzed
by Hanson et al. 2004; O’Toole et al. 2005, 2007) and found similar similarity structures using
different distance measures, one based on intermediate-layer weights in a neural network classifier
and the other based on misclassifications. Both found that the strongest dissimilarity was between
the animate (human faces and cats) and inanimate (houses, chairs, shoes, bottles, and scissors)
categories and, within the inanimate domain, a strong dissimilarity between houses and all the
smaller objects. These basic elements of the structure of face, animal, and object representations
were corroborated and greatly amplified by subsequent studies in monkeys (Kiani et al. 2007) and
humans (Kriegeskorte et al. 2008b). Kiani et al. (2007) measured the responses of single neurons
in the monkey inferior temporal (IT) cortex to a large variety of faces, animals, and objects and cal-
culated correlations among response vectors as indices of the similarity of the population response
vectors. The results revealed the major distinctions between animate and inanimate stimuli, with
a clear distinction between faces and bodies, but went deeper to show a similarity structure for the
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Figure 1.6 An example of Representational Similarity Analysis (RSA) [1]

coordinate axes [1, 27, 28]. Third, RSA can compare the neural activities across distinctive species.

For instance, Figure 1.8 illustrates the comparisons of different visual stimuli between monkeys brain

and human brains [28]. The main disadvantage of RSA techniques is that they do not create any

cognitive models and the whole of RSA procedure must be repeated for analyzing a new subject.

Consequently, RSA techniques are not computationally efficient [1].

In practice, RSA can be mathematically formulated as a multi-set (group) regression problem,

i.e., a linear model for mapping between the matrix of neural activities and the design matrix. Original

RSA employs basic linear approaches, such as Ordinary Least Squares (OLS) [7] or General Linear

Model (GLM) [28]. Further, some of the modern approaches utilize the Bayesian technique [3, 29].

For instance, Bayesian RSA (BRSA) [3] considers the covariance matrix as a hyper-parameter gener-

ative model and then calculates this matrix from neural activities. As other alternatives, some studies

employ regularized techniques, i.e., Ridge Regression [30], Least Absolute Shrinkage and Selection

Operator (LASSO) [31], Elastic Net method [32], Octagonal Shrinkage and Clustering Algorithm for

Regression (OSCAR) [33], and Ordered Weighted ℓ1 (OWL) [34, 35]. In some sense, RSA is similar

to clustering techniques in machine learning [36–38].
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Figure 1.7 An example of Dissimilarity Matrix (DSM) [1, 27]
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Figure 1.9 An example of Stimulus-Model-based Encoding and Decoding (SMED) [1]

1.3.5 Stimulus-Model-based Encoding and Decoding (SMED)

The previous approaches, including MVP classification, RSA, and hyperalignment, compare

different neural activities generated by distinctive stimuli in the same subject or across different sub-

jects. Indeed, these methods cannot enable us to predict the neural activities for a novel stimulus or

even a new dataset [1]. Stimulus-Model-based Encoding and Decoding (SMED) methods can extend

the generated MVP /or RSA analysis for decoding the neural activities of the novel stimuli [39]. As

Figure 1.9 depicted, SMED predicts the response to stimulus features rather than to the whole stimuli.

Further, SMED technique focused on mapping vectors from feature space belonging to each stimulus

to the shared neural spaces. Indeed, SMED is limited to Bayesian reconstruction based on similarities

to a set of priors [1]. In practice, this technique can be useful for neuroscientist after a robust cognitive

model is generated [1].

1.4 Organization of this thesis

In Chapter 2, we introduce two techniques for functional alignment. As the first technique,

Local Discriminant Hyperalignment (LDHA) method incorporates the idea of Local Discriminate

Analysis (LDA) into CCA [40] in order to improve the performance of the hyperalignment solution.

Indeed, LDHA maximizes the correlation between homogeneous stimuli (from the same category)

and also removes the correlation between different categories of stimuli. Furthermore, we propose

Deep Hyperalignment (DHA) as a novel nonlinear approach for functional alignment. DHA is not

limited by a restricted fixed representational space because the kernel in DHA is a multi-layer neural

network, which can separately implement any nonlinear function [41, 42] for each subject to transfer
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the brain activities to the shared space.

In Chapter 3, we develop novel feature analysis techniques. While the classical methods just can

extract features from voxel space, the proposed method discusses how to select a subset of time-points

for analyzing the neural activities. Indeed, the proposed method estimates and analyzes a snapshot

of brain image for each stimulus when the level of using oxygen is maximized. In other words, these

snapshots are selected by finding local maximums in the smoothed version of the design matrix. The

main advantage of this method is that it can decrease the sparsity of fMRI datasets. Further, we

propose two learning approaches, including both unsupervised learning and supervised learning.

In Chapter 4, we propose Deep Representational Similarity Analysis (DRSA) as a new deep

extension of RSA method for similarity analysis. Indeed, DRSA utilizes a deep network–including

multiple stacked layers of nonlinear transformation–as the kernel function, which maps nonlinear

neural activities to a linear information-rich embedded space and then evaluates the similarities (or

distances) between the mapped features. Further, the proposed method employs a new regulariza-

tion term that can make a trade-off between correlation and covariance of distinctive cognitive tasks.

Since DRSA uses gradient-based optimization approaches, it is time efficient for evaluating high-

dimensional fMRI images, such as whole-brain datasets.

In Chapter 5, we propose novel supervised learning techniques. Firstly, we introduce a novel ap-

proach for imbalance-classification learning. Indeed, this method is well-suited for one-vs-all classi-

fication analysis. Then, we focus on multi-class learning approach. Here, we utilize Error-Correcting

Output Codes (ECOC) as an indirect multi-class approach in order to extend the proposed binary

classifiers for the multi-class prediction.

In Chapter 6, we then present contributions and the conclusions. Besides the theories and the

empirical studies in the thesis, we also make our research easily reproducible and open to the pub-

lic. We have created a GUI-based toolbox for running the standard pipeline of analyzing task-based

fMRI images, including the proposed methods in this thesis, that is available at https://easyfmri.

github.io. Moreover, we have also prepared a data repository for sharing task-based fMRI datasets.

This repository is available at https://easyfmridata.github.io. It includes more than 35 pre-

processed real-world datasets related to distinctive cognitive tasks.

Figure 1.10 illustrates the graphical abstract of this thesis across chapters.

Prior Publications Parts of this thesis have been published in [8, 13, 14, 19, 20, 36–38].
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Figure 1.10 The graphical map of this thesis
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Chapter 2. Supervised and Deep Hyperalignment

One of the main challenges in fMRI studies, especially MVP analysis, is using multi-subject

datasets. On the one hand, the multi-subject analysis is critical to figure out the generality and va-

lidity of the generated results across subjects. On the other hand, analyzing multi-subject fMRI data

requires accurate functional and anatomical alignments between neuronal activities of different sub-

jects in order to increase the performance of the final results [6, 12]. Indeed, the fMRI datasets must

be aligned across subjects in multi-subject studies in order to take between-subject variability into ac-

count. There are twomain alignment approaches, i.e. anatomical alignment and functional alignment,

which can work in unison. The anatomical alignment is the most common method for aligning fMRI

images based on anatomical features by employing structural MRI images, e.g., Talairach alignment

[43], or Montreal Neurological Institute (MNI) [44, 45]. However, this method generated limited ac-

curacy since the size, shape and anatomical location of functional loci differ across subjects [46, 47].

Indeed, anatomical alignment is just used in many fMRI studies as a preprocessing step. By contrast,

functional alignment seeks to directly align the brain neural responses across subjects.

2.1 Functional Alignment Techniques

There are several non-CCA based studies, which used functional and anatomical features for

fMRI alignment. Conroy et al. introduced a new way to maximize the alignment of intra-subject

patterns by utilizing the cortical warping [10]. Sabuncu et al. used cortical warping for maximizing

the Inter-Subject Correlation (ISC) across subjects [48]. Dmochowski et al. maximized ISC by ag-

gregating the subjects’ data into an individual matrix [49]. Micheal et al. also proposed the GICA,

IVA algorithms for rest-mode fMRI (rs-fMRI) functional alignment. Since this method does not as-

sume time-synchronized stimulus, it concatenates data along the time dimension (implying spatial

consistency) and learns spatial independent components [50].

As the widely used functional alignment method [4–6, 9, 11–14, 16], Hyperalignment (HA)

[6] is an ‘anatomy free’ functional alignment method, which can be mathematically formulated as a

multiple-set Canonical Correlation Analysis (CCA) problem [4, 11, 51]. Original HA does not work
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in a very high dimensional space [9, 13]. In order to extend HA into the real-world problems, Xu

et al. developed the Regularized Hyperalignment (RHA) by utilizing an EM algorithm to iteratively

seek the regularized optimum parameters [11]. Lorbert et al. illustrated the limitation of HA methods

on the linear representation of fMRI responses. They also proposed Kernel Hyperalignment (KHA)

as a nonlinear alternative in an embedding space for solving the HA limitation [4, 5]. Although

KHA can solve the nonlinearity and high-dimensionality problems, its performance is limited by the

fixed employed kernel function. Sui et al. employed the multimodal CCA and ICA approaches on

multimodal data for identifying the unique and shared variance associated across modalities [52, 53].

Further, Chen et al. developed Singular Value Decomposition Hyperalignment (SVDHA), which

firstly provides dimensionality reduction by SVD, and then HA aligns the functional responses in the

reduced space [12]. In another study, Chen et al. introduced Shared Response Model (SRM), which

is technically equivalent to Probabilistic CCA [16].

Guntupalli et al. developed a linear model of shared representational spaces based on the original

HA. This model can trace fine-scale distinctions among varied responses with response-tuning basis

functions that are common across subjects and models. Indeed, this method is actually an ensemble of

quasi-CCA models fits on patches of the brain images [15]. As another nonlinear HA method, Chen

et al. recently developed Convolutional Autoencoder (CAE) for whole brain functional alignment.

Indeed, this method reformulates the SRM as a multi-view autoencoder and then uses the standard SL

analysis [15] in order to improve the stability and robustness of the generated classification (cognitive)

model. Since CAE simultaneously employs SRM and SL, its time complexity is so high. Turek et al.

proposed a semi-supervised HA that simultaneously applies the alignment and performs the analysis.

Indeed, this method also used the SRM [9] for alignment and then Multinomial Logistic Regression

is employed for classification [18].

2.2 Hyperalignment

Preprocessed fMRI time series collected for S subjects can be defined by X(i) =
{
x
(i)
mn

}
∈

RT×V , i = 1:S,m = 1:T, n = 1:V , where T denotes the number of time points in unites of TRs

(Time of Repetition), V is the number of voxels, and x(i)
mn ∈ R denotes the functional activity for the

i-th subject in them-th time point and the n-th voxel. For simplicity, assume that all data points are

normalized by zero-mean and unit-variance, X(i) ∼ N (0, 1), i = 1:S. If the original data points are
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not normalized, we can consider this assumption as a preprocessing step. Since there are more voxels

than TRs in most of the fMRI studies, X(i) and the voxel correlation map (X(i))⊤X(j) may not be full

rank [4, 5, 9, 11–14, 16]. In training-set, time synchronized stimulus ensures temporal alignment,

i.e. the m-th time point for all of the subjects represents the same simulation [11, 12]. Indeed, the

main goal of HA methods is aligning the columns of X(i) across subjects [4, 14]. In previous studies,

Inter-Subject Correlation (ISC) was defined for functional alignment between two distinct subjects as

follows, where tr() is the trace function: [4, 5, 11, 12]

ISC(X(i),X(j)) = (1/V )tr
(
(X(i))⊤X(j)

)
. (2.1)

By consideringX(ℓ) ∼ N (0, 1), ℓ = 1:S as column-wise standardized, ISC lies in [−1,+1]. Here, the

large values illustrate better alignment [4, 11]. Based on (2.1), Hyperalignment (HA) problem can be

defined as follows: [4, 5, 9, 11, 12]

max
R(i),R(j)

S∑
i=1

S∑
j=i+1

ISC(X(i)R(i),X(j)R(j)) s.t.
(
R(ℓ)

)⊤Φ̃(ℓ)R(ℓ) = I, ℓ = 1:S, (2.2)

where I is the identity matrix, R(ℓ) =
{
r
(ℓ)
mn

}
∈ RV×V denotes the solution for ℓ-th subject, and

the matrices Φ̃(ℓ) ∈ RV×V , ℓ = 1:S are symmetric and positive definite. By considering Φ̃(ℓ) = I,

(2.2) is equivalent to a multi-set orthogonal Procrustes problem [51], which is commonly used in

share analysis. Furthermore, if Φ̃(ℓ) = (X(ℓ))⊤X(ℓ), then (2.2) denotes a form of multi-set Canonical

Correlation Analysis (CCA) [4, 11] as follows:

max
R(i),R(j)

S∑
i=1

S∑
j=i+1

tr
(
(X(i)R(i))⊤X(j)R(j)

)
s.t.

(
X(ℓ)R(ℓ)

)⊤X(ℓ)R(ℓ) = I, ℓ = 1:S. (2.3)

Lemma 2.1. (2.3)maximizes the Pearson correlation (cov(A,B)/σAσB) between each pair of mapped

features (X(ℓ)R(ℓ) ) across subjects [11, 40].

Proof. By considering Φ̃(ℓ) ∈ RV×V = E
[
(X(ℓ))⊤X(ℓ)

]
= (X(ℓ))⊤X(ℓ) as Expectation for population,

the Pearson correlation on (2.3) can be defined as follows:

max
R(i),R(j)

S∑
i=1

S∑
j=i+1

tr
(

(X(i)R(i))⊤X(i)R(j)√
((R(i))⊤Φ̃(i)R(i))

√
((R(j))⊤Φ̃(j)R(j))

)
. (2.4)

Since
(
R(ℓ)

)⊤Φ̃(ℓ)R(ℓ) = I, we approach from (2.4) to (2.3).
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The constrains must be imposed in R(ℓ) to avoid overfitting [11]. In order to seek an optimum

solution, solving (2.3) may not be the best approach because there is no scale to evaluate the distance

between current result and the optimum (fully maximized) solution [4, 13].

Lemma 2.2. (2.3) can be rewritten as following minimization problem:

min
R(i),R(j)

S∑
i=1

S∑
j=i+1

∥∥∥X(i)R(i) − X(j)R(j)
∥∥∥2
F
, s.t.

(
X(ℓ)R(ℓ)

)⊤
X(ℓ)R(ℓ) = I, ℓ = 1:S, (2.5)

where (2.5) approaches zero for an optimum result.

Proof.

min
R(i),R(j)

S∑
i=1

S∑
j=i+1

∥∥∥X(i)R(i) − X(j)R(j)
∥∥∥2
F
= min

R(i),R(j)

S∑
i=1

S∑
j=i+1

(
tr
((
X(i)R(i)

)⊤X(i)R(i)
)
+

tr
((
X(j)R(j)

)⊤X(j)R(j)
)
− 2tr

((
X(i)R(i)

)⊤X(j)R(j)
))

.

Since
(
X(ℓ)R(ℓ)

)⊤
X(ℓ)R(ℓ) = I, so we have:

min
R(i),R(j)

S∑
i=1

S∑
j=i+1

(
2Vnew − 2tr

((
X(i)R(i)

)⊤X(j)R(j)
))
≡ max

R(i),R(j)

S∑
i=1

S∑
j=i+1

tr
(
(X(i)R(i))⊤X(j)R(j)

)
.

The main assumption in the original HA is that theR(ℓ), ℓ = 1:S are noisy ‘rotations’ of a shared

space (or common template) [6].

Lemma 2.3. The equation (2.5) is equivalent to:

min
R(i),G

S∑
i=1

∥∥∥X(i)R(i) −G
∥∥∥2
F
, s.t.

(
X(ℓ)R(ℓ)

)⊤
X(ℓ)R(ℓ) = I, ℓ = 1:S, (2.6)

where G ∈ RT×V is the shared space:

G =
1

S

S∑
j=1

X(j)R(j) (2.7)
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Proof.

min
R(i),R(j)

S∑
i=1

S∑
j=i+1

∥∥∥X(i)R(i) − X(j)R(j)
∥∥∥2
F
=

min
R(i),R(j)

S∑
i=1

S∑
j=i+1

(
tr
((
X(i)R(i)

)⊤X(i)R(i)
)
+ tr

((
X(j)R(j)

)⊤X(j)R(j)
)
− 2tr

((
X(i)R(i)

)⊤X(j)R(j)
))

≡ min
R(i),R(j),

G

1

2

S∑
i=1

(
Str
((
X(i)R(i)

)⊤X(i)R(i)
)
− 2Str

((
X(i)R(i)

)⊤G)+ S∑
j=1

(
tr
((
X(j)R(j)

)⊤X(j)R(j)
)))

= min
R(i),R(j),

G

1

2

((
S

S∑
i=1

tr
((
X(i)R(i)

)⊤X(i)R(i)
))
−
(
2S2tr

(
G⊤G

))
+

(
S

S∑
j=1

tr
((
X(j)R(j)

)⊤Y(j)R(j)
)))

= min
R(i),G

1

2

((
2S

S∑
i=1

tr
((
X(i)R(i)

)⊤X(i)R(i)
)
−
(
2S2tr

(
G⊤G

)))

= min
R(i),G

((
S

S∑
i=1

tr
((
X(i)R(i)

)⊤X(i)R(i)
))
−
(
S2tr

(
G⊤G

)))

= min
R(i),G

((
S

S∑
i=1

tr
((
X(i)R(i)

)⊤X(i)R(i)
))
− 2
(
S2tr

(
G⊤G

))
+
(
S2tr

(
G⊤G

)))

= min
R(i),G

S
S∑

i=1

(
tr
((
X(i)R(i)

)⊤X(i)R(i)
)
+ tr

(
G⊤G

)
− 2tr

((
X(i)R(i)

)⊤G))

≡ min
R(i),G

S∑
i=1

∥∥∥G− X(i)R(i)
∥∥∥2
F

Classical HA approach can be generalized to the real-world problems as follows:

min
R(i),G

S∑
i=1

∥∥∥f(X(i)
)
R(i) −G

∥∥∥2
F
, s.t.

(
f
(
X(ℓ)

)
R(ℓ)

)⊤
f
(
X(ℓ)

)
R(ℓ) = I, ℓ = 1:S. (2.8)

Here, if f
(
x
)
= x, then we recover the original HA. Further, if f

(
x
)
denotes any classical fixed kernel

function (e.g. Gaussian), then (2.8) is equivalent to Kernel Hyperalignment (KHA) [4, 5]. In addition,

if f
(
x
)
illustrates an SVD-based feature selection, then (2.8) is called SVDHyperalignment (SVDHA)

[12]. As another alternative, (2.8) can be optimized by using different approaches. For instance,

Regularized Hyperalignment (RHA) used the Generalized CCA [11], Shared Response Model (SRM)

employed Probabilistic CCA [9].
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Figure 2.1 Comparison of unsupervised and supervised HA algorithms

2.3 Local Discriminant Hyperalignment

Since the unsupervised CCA techniques are employed for solving HA problems, the solution

may not be optimized for supervised MVP analysis. In other words, CCA just finds a set of mappings

to maximize the correlation between the same time-points of functional activities (in voxel-level) for

all subjects, while it must maximize the correlation between homogeneous stimuli (from the same

category) and also remove the correlation between different categories of stimuli. Indeed, this is a

common problem in Machine Learning. For instance, Linear Discriminant Analysis (LDA) is mostly

used rather than Principal Component Analysis (PCA) in the classification analysis, where LDA uses

the supervision information such as class labels or similarity between samples for improving the per-

formance of classification methods.

In this section, we introduce Local Discriminant Hyperalignment (LDHA) method, which incor-

porates the idea of Local Discriminate Analysis (LDA) into CCA [40] in order to improve the perfor-

mance of the hyperalignment solution. As Figure 2.1 depicted, the idea of locality is defined based on

the stimuli categories (class labels) in the train-set, where the proposed method firstly generates two

sets for each category of stimuli, i.e. the set of nearest homogeneous stimuli as within-class neighbor-

hoods and the set of stimuli from distinct categories as between-class neighborhoods. Then, these two

sets are used to provide a better HA solution, where the correlation between the within-class neigh-

borhoods is maximized, and also the correlation among between-class neighborhoods approaches to

zero.

As mentioned before, (2.3) may not be optimum for supervised fMRI analysis. In order to im-
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prove the performance of functional alignment, Local Discriminant Hyperalignment (LDHA) uses

following objective function:

max
R(i),R(j)

S∑
i=1

S∑
j=i+1

tr
((
R(i)
)⊤(Δ(i,j) − η

T 2
Ω(i,j)

)
R(j)

)
(2.9)

where η is the number of within-class elements, and T denotes all time points. Further, the covariance

within-class matrix Δ(i,j) =
{
δ
(i,j)
mn

}
and the covariance between-class matrix Ω(i,j) =

{
ω
(i,j)
mn

}
are

denoted as follows:

δ(i,j)mn =
T∑

ℓ=1

T∑
k=1

αℓkx
(i)
ℓmx

(j)
kn + αℓkx

(i)
ℓnx

(j)
km (2.10)

ω(i,j)
mn =

T∑
ℓ=1

T∑
k=1

(1− αℓk)x
(i)
ℓmx

(j)
kn + (1− αℓk)x

(i)
ℓnx

(j)
km (2.11)

where αℓk = 1 for within-class elements, otherwise it is zero. Moreover, x(i)
mn ∈ R is the neural

activity for them− th time point and the n− th voxel in the i− th subject.

Lemma 2.4. Like the classical CCA, LDHA can be solved as a generalized eigenvalue decomposition

problem.

Proof. We firstly define following matrix by using the covariance matrices:

Φ(i,j) = Δ(i,j) − η

T 2
Ω(i,j). (2.12)

Then, we have:

P(i,j) =
(
Φ̃(i)

)−1/2Φ(i,j)
(
Φ̃(j)

)−1/2 (2.13)

where P(i,j) ̸= P(j,i), and Φ̃(ℓ) = (X(ℓ))⊤X(ℓ). Now, we can apply rank-m SVD decomposition [42]

on P(i,j) as follows:

P(i,j) SV D
= Ω(i,j)Σ(i,j)

(
Ψ(i,j)

)⊤
. (2.14)

Finally, we can calculate the mapping as follows:

R(i) =
S∑

j=1

(
Φ̃(i)

)−1/2Ω(i,j) (2.15)

In addition, the shared space can be calculated by using (2.7).
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Algorithm 2.1 A template for MVP analysis by using LDHA
Input: Train Set X(i), i = 1:S, Test Set X̂(j), j = 1:Ŝ:

Output: Classification Model π, Classification Performance (ACC, AUC):

Method:

01. For each X(i), i = 1:S, calculating R(i) by using (2.15).

02. Generating the shared space (G) by utilizing (2.7).

03. Training a classifier π by using X(i)R(i), i = 1:S.

04. For each X̂(j), j = 1:Ŝ, calculating R̂(i) by using G and (2.6) [11].

05. Evaluating (ACC, AUC) the trained classifier π by using X̂(j)R̂(i).

Algorithm 2.1 demonstrates a general template forMVP analysis based on LDHAmethod. Here,

X(i), i = 1:S is the training set for S subjects. Further, X̂(j), j = 1:Ŝ denotes the testing set for Ŝ

subjects. As this algorithm depicted, the procedure of generating the HA template (G) in the training

stage is changed, while the template is used in the testing stage such as the unsupervised HA methods

[4, 11]. Therefore, we do not need the class labels in the testing stage. Indeed, the proposed method

in comparison with the unsupervised solutions just generates more optimumHA template for aligning

functional neural activities, where this template can maximize the correlation between all stimuli in

the same category and minimize the correlation between different categories of stimuli.

2.4 Deep Hyperalignment

This section introduces a new nonlinear methods that can improve three issues in HA problems,

i.e., nonlinearity, high-dimensionality, and using a large number of subjects. As Figure 2.2 depicted,

we propose a novel kernel approach, which is called Deep Hyperalignment (DHA), where it em-

ploys deep network, i.e. multiple stacked layers of nonlinear transformation, as the kernel function,

which is parametric and uses rank-m SVD and Stochastic Gradient Descent (SGD) for optimization.

Consequently, DHA generates low-runtime on large datasets, and the training data is not referenced

when DHA computes the functional alignment for a new subject. Further, DHA is not limited by

a restricted fixed representational space because the kernel in DHA is a multi-layer neural network,

which can separately implement any nonlinear function [13, 41, 42] for each subject to transfer the
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brain activities to a common space. Based on (2.8), objective function of DHA is defined as follows:

min
G,R(i),θ(i)

S∑
i=1

∥∥∥G− fi
(
X(i);θ(i)

)
R(i)
∥∥∥2
F

G =
1

S

S∑
j=1

fj
(
X(j);θ(j)

)
R(j),

s.t.
(
R(ℓ)

)⊤((
fℓ
(
X(ℓ);θ(ℓ)

))⊤
fℓ
(
X(ℓ);θ(ℓ)

)
+ ϵI

)
R(ℓ) = I, ℓ = 1:S,

(2.16)

where θ(ℓ)=
{
W(ℓ)

m , b(ℓ)m ,m=2:C
}
denotes all parameters in ℓ-th deep network belonged to ℓ-th sub-

ject,R(ℓ) ∈ RVnew×Vnew is the DHA solution for ℓ-th subject, Vnew ≤ V denotes the number of features

after transformation, the regularized parameter ϵ is a small constant, e.g., 10−8, and deep multi-layer

kernel function fℓ
(
X(ℓ);θ(ℓ)

)
∈ RT×Vnew is denoted as follows:

fℓ
(
X(ℓ);θ(ℓ)

)
= mat

(
h(ℓ)C , T, Vnew

)
, (2.17)

whereT denotes the number of time points,C ≥ 3 is number of deep network layers, mat(x,m, n):Rmn →

Rm×n denotes the reshape (matricization) function, and h(ℓ)C ∈ RTVnew is the output layer of the fol-
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lowing multi-layer deep network:

h(ℓ)m = g
(
W(ℓ)

m h(ℓ)m−1 + b(ℓ)m

)
, where h(ℓ)1 = vec

(
X(ℓ)

)
and m = 2:C. (2.18)

Here, g:R → R is a nonlinear function applied componentwise, vec:Rm×n → Rmn denotes the

vectorization function, consequently h(ℓ)1 = vec
(
X(ℓ)

)
∈ RTV . Notably, this thesis considers both

vec() and mat() functions are linear transformations, where X ∈ Rm×n = mat
(
vec(X),m, n

)
for

any matrix X. By considering U (m) units in the m-th intermediate layer, parameters of distinctive

layers of fℓ
(
X(ℓ);θ(ℓ)

)
are defined by following properties: W(ℓ)

C ∈ RTVnew×U(C-1) and b(ℓ)C ∈ RTVnew

for the output layer, W(ℓ)
2 ∈ RU(2)×TV and b(ℓ)2 ∈ RU(2) for the first intermediate layer, andW(ℓ)

m ∈

RU(m)×U(m-1) , b(ℓ)m ∈ RU(m) and h(ℓ)m ∈ RU(m) form-th intermediate layer (3 ≤ m ≤ C − 1).

Remark 1. Same as previous approaches for HA problems [4, 9, 11, 12], a DHA solution is not

unique. If a DHA template G is calculated for a specific HA problem, then QG is another solution

for that specific HA problem, where Q ∈ RVnew×Vnew can be any orthogonal matrix. Consequently, if

two independent templates G1, G2 are trained for a specific dataset, the solutions can be mapped to

each other by calculating
∥∥G2−QG1

∥∥, whereQ can be used as a coefficient for functional alignment

in the first solution in order to compare its results to the second one. Indeed, G1 and G2 are located

in different positions on the same contour line [2, 9, 13].

We propose an effective approach for optimizing the DHA objective function by using rank-

m SVD and SGD. This method seeks an optimum solution for the DHA objective function (2.16)

by using two different steps, which iteratively work in unison. By considering fixed network pa-

rameters (θ(ℓ)), a mini-batch of neural activities is firstly aligned through the deep network. Then,

back-propagation algorithm is used to update the network parameters. The main challenge for solv-

ing the DHA objective function is that we cannot seek a natural extension of the correlation object to

more than two random variables. Consequently, functional alignments are stacked in a S × S matrix

and maximize a certain matrix norm for that matrix [42].

As the first step, we consider network parameters are in an optimum state. Therefore, the map-

pings (R(ℓ), ℓ = 1:S) and template (G) must be calculated to solve the DHA problem. In order to scale

DHA approach, this thesis employs the rank-m SVD [42] of the mapped neural activities as follows:

fℓ
(
X(ℓ);θ(ℓ)

) SV D
= Ω(ℓ)Σ(ℓ)

(
Ψ(ℓ)

)⊤, ℓ = 1:S (2.19)

22



Nanjing University of Aeronautics and Astronautics

where Σ(ℓ) ∈ Rm×m denotes the diagonal matrix withm-largest singular values of the mapped feature

fℓ
(
X(ℓ);θ(ℓ)

)
, Ω(ℓ) ∈ RT×m and Ψ(ℓ) ∈ Rm×Vnew are respectively the corresponding left and right

singular vectors. Based on (2.19), the projection matrix for ℓ-th subject can be generated as follows:

[42]

P(ℓ) = fℓ
(
X(ℓ);θ(ℓ)

)((
fℓ
(
X(ℓ);θ(ℓ)

))⊤
fℓ
(
X(ℓ);θ(ℓ)

)
+ ϵI

)−1(
fℓ
(
X(ℓ);θ(ℓ)

))⊤
= Ω(ℓ)

(
Σ(ℓ)
)⊤(Σ(ℓ)

(
Σ(ℓ)
)⊤

+ ϵI
)−1

Σ(ℓ)
(
Ω(ℓ)

)⊤
= Ω(ℓ)D(ℓ)

(
Ω(ℓ)D(ℓ)

)⊤
,

(2.20)

where P(ℓ) ∈ RT×T is symmetric and idempotent [42], and diagonal matrix D(ℓ) ∈ Rm×m is

D(ℓ)
(
D(ℓ)

)⊤
=
(
Σ(ℓ)
)⊤(Σ(ℓ)

(
Σ(ℓ)
)⊤

+ ϵI
)−1

Σ(ℓ). (2.21)

Further, the sum of projection matrices can be defined as follows, where ÃÃ⊤ is the Cholesky de-

composition [42] of A:

A =
S∑

i=1

P(i) = ÃÃ⊤, where Ã ∈ RT×mS =
[
Ω(1)D(1) . . .Ω(S)D(S)

]
. (2.22)

Lemma 2.5. By considering (2.22) and following mapping function:

R(ℓ) =

((
fℓ
(
X(ℓ);θ(ℓ)

))⊤
fℓ
(
X(ℓ);θ(ℓ)

)
+ ϵI

)−1(
fℓ
(
X(ℓ);θ(ℓ)

))⊤
G, (2.23)

the objective function of DHA (2.16) can be rewritten as follows:

min
G,R(i),θ(i)

S∑
i=1

∥∥∥G− fi
(
X(i);θ(i)

)
R(i)
∥∥∥ ≡ max

G

(
tr
(
G⊤AG

))
. (2.24)

Proof. For simplicity, we consider that fℓ
(
X(ℓ);θ(ℓ)

)
= Y(ℓ). By replacing (2.23), we have:

min
G,θ(i),R(i)

S∑
i=1

∥∥∥G− Y(i)
((
Y(i)
)⊤Y(i) + ϵI

)−1(
Y(i)
)⊤G∥∥∥2

F

Based on (2.20), we have:

min
G

S∑
i=1

∥G− P(i)G∥2F = min
G

S∑
i=1

∥
(
I− P(i)

)
G∥2F = min

G

S∑
i=1

tr
(((

I− P(i)
)
G
)⊤(

I− P(i)
)
G
)

= min
G

S∑
i=1

tr
(
G⊤(I− P(i)

)⊤(I− P(i)
)
G
)

= min
G

S∑
i=1

tr
(
G⊤(I− P(i)

)2G)
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Since P(i) is idempotent (
(
P(i)
)2

= P(i)) [42, 54], we have:

min
G

S∑
i=1

tr
(
G⊤(I− P(i)

)2G) = min
G

S∑
i=1

tr
(
G⊤
(
I2 +

(
P(i)
)2 − 2IP(i)

)
G
)

= min
G

S∑
i=1

tr
(
G⊤
(
I2 + P(i) − 2P(i)

)
G
)

= min
G

S∑
i=1

tr
(
G⊤(I− P(i)

)
G
)

= min
G

S∑
i=1

tr
(
G⊤IG−G⊤P(i)G

)
= min

G

S∑
i=1

(
tr
(
I
)
− tr

(
G⊤P(i)G

))

= min
G

(
SV − tr

(
G⊤( S∑

i=1

P(i)
)
G
))

Based on (2.22), we have:

= min
G

(
SV − tr

(
G⊤AG

))
≡ max

G

(
tr
(
G⊤AG

))

Based on Lemma 2.5, the first optimization step of DHA problem can be expressed as eigende-

composition of AG = GΛ, where Λ =
{
λ1 . . . λT

}
and G respectively denote the eigenvalues and

eigenvectors of A. Further, the matrix G that we are interested in finding, can be calculated by the

left singular vectors of Ã = GΣ̃Ψ̃⊤, where G⊤G = I [42, 54]. This thesis utilizes Incremental SVD

[55] for calculating these left singular vectors.

Lemma 2.6. In order to update network parameters as the second step, the derivative of Z =∑T
ℓ=1 λℓ, which is the sum of eigenvalues of A, over the mapped neural activities of ℓ-th subject is

defined as follows:

∂Z
∂fℓ
(
X(ℓ);θ(ℓ)

) = 2R(ℓ)G⊤ − 2R(ℓ)
(
R(ℓ)

)⊤(
fℓ
(
X(ℓ);θ(ℓ)

))⊤
. (2.25)

Proof. For simplicity, we define fℓ
(
X(ℓ);θ(ℓ)

)
= Y(ℓ) and the covariance matrix for ℓ-th subject as

follows:

Φ̃(ℓ) =
((
Y(ℓ)

)⊤Y(ℓ) + ϵI
)

(2.26)

Further, the inverse of the covariance matrix is denoted for ℓ-th subject as follows:

Φ(ℓ) =
(
Φ̃(ℓ)

)−1
=
((
Y(ℓ)

)⊤Y(ℓ) + ϵI
)−1

(2.27)
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where this matrix is symmetric (Φ(ℓ) =
(
Φ(ℓ)

)⊤). Based on (2.27), the projection (2.20) can be

rewritten as follows:

P(ℓ) = Y(ℓ)Φ(ℓ)
(
Y(ℓ)

)⊤ (2.28)

Further, the final mappings (2.23) can be reformulated as follows:

R(ℓ) = Φ(ℓ)
(
Y(ℓ)

)⊤G (2.29)

Since ∂Z/∂A = GG⊤ [14], we reformulate the left side of (2.25) based on the chain rule as follows:

∂Z
∂Y(ℓ)

αβ

=
Vnew∑
µ,τ=1

∂Z
∂Aµτ

∂Aµτ

∂Y(ℓ)
αβ

=
Vnew∑
µ,τ=1

(
GG⊤)

τµ

∂Aµτ

∂Y(ℓ)
αβ

(2.30)

By considering (2.22), the product rule, and this key point that P(ℓ) is the only projection related to

Y(ℓ), we have:

∂Aµτ

∂Y(ℓ)
αβ

=
∂P(ℓ)

µτ

∂Y(ℓ)
αβ

= δµβ

Vnew∑
i=1

Y(ℓ)
τi Φ

(ℓ)
αi + δτβ

Vnew∑
j=1

Y(ℓ)
µjΦ

(ℓ)
jα +

Vnew∑
i,j=1

Y(ℓ)
µjY

(ℓ)
τi

∂Φ(ℓ)
ji

∂Y(ℓ)
αβ

= δµβ

(
Φ(ℓ)

(
Y(ℓ)

)⊤)
ατ

+ δτβ

(
Φ(ℓ)

(
Y(ℓ)

)⊤)
αµ

+
Vnew∑
i,j=1

Y(ℓ)
µjY

(ℓ)
τi

∂Φ(ℓ)
ji

∂Y(ℓ)
αβ

(2.31)

The last term also can be calculated by using the chain rule as follows:

∂Φ(ℓ)
ji

∂Y(ℓ)
αβ

=
T∑

m,n=1

∂Φ(ℓ)
ji

Φ̃(ℓ)
mn

Φ̃(ℓ)
mn

∂Y(ℓ)
αβ

= −
T∑

m,n=1

(
Φ(ℓ)

jmΦ
(ℓ)
ni

(
δαmY(ℓ)

βn + δαnY(ℓ)
βm

))

= −
T∑

n=1

Φ(ℓ)
jαΦ

(ℓ)
niY

(ℓ)
βn −

T∑
m=1

Φ(ℓ)
jmΦ

(ℓ)
αiY

(ℓ)
βm = −Φ(ℓ)

jα

(
Φ(ℓ)

(
Y(ℓ)

)⊤)
iβ
−Φ(ℓ)

αi

(
Φ(ℓ)

(
Y(ℓ)

)⊤)
jβ

(2.32)

By applying (2.32) to (2.31), we have:

∂P(ℓ)
µτ

∂Y(ℓ)
αβ

= δµβ

(
Φ(ℓ)

(
Y(ℓ)

)⊤)
ατ

+ δτβ

(
Φ(ℓ)

(
Y(ℓ)

)⊤)
αµ
−
(
Φ(ℓ)

(
Y(ℓ)

)⊤)
αµ

(
Y(ℓ)Φ(ℓ)

(
Y(ℓ)

)⊤)
βτ

−
(
Φ(ℓ)

(
Y(ℓ)

)⊤)
ατ

(
Y(ℓ)Φ(ℓ)

(
Y(ℓ)

)⊤)
βµ

= δµβ

(
Φ(ℓ)

(
Y(ℓ)

)⊤)
ατ

+ δτβ

(
Φ(ℓ)

(
Y(ℓ)

)⊤)
αµ
−(

Φ(ℓ)
(
Y(ℓ)

)⊤)
αµ

(
P(ℓ)
)
βτ
−
(
Φ(ℓ)

(
Y(ℓ)

)⊤)
ατ

(
P(ℓ)
)
βµ

=(
I− P(ℓ)

)
βτ

(
Φ(ℓ)

(
Y(ℓ)

)⊤)
αµ

+
(
I− P(ℓ)

)
βµ

(
Φ(ℓ)

(
Y(ℓ)

)⊤)
ατ

(2.33)
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Finally, we can calculate (2.25) as follows:

∂Z
∂Y(ℓ)

αβ

=
T∑

µ,τ=1

((
GG⊤)

µτ

(
I− P(ℓ)

)
µβ

(
Φ(ℓ)

(
Y(ℓ)

)⊤)
ατ

)

+
T∑

µ,τ=1

((
GG⊤)

µτ

(
I− P(ℓ)

)
τβ

(
Φ(ℓ)

(
Y(ℓ)

)⊤)
αµ

)
= 2

(
Φ(ℓ)

(
Y(ℓ)

)⊤GG⊤(I− P(ℓ)
))

αβ

(2.34)

Consequently, we have:

∂Z
∂Y(ℓ)

= 2Φ(ℓ)
(
Y(ℓ)

)⊤GG⊤(I− P(ℓ)
)

(2.35)

By considering (2.29), we have:

∂Z
∂Y(ℓ)

= 2R(ℓ)G⊤(I− P(ℓ)
)
= 2R(ℓ)G⊤ − 2R(ℓ)G⊤P(ℓ) (2.36)

By applying (2.28), we have:

= 2R(ℓ)G⊤ − 2R(ℓ)G⊤Y(ℓ)Φ(ℓ)
(
Y(ℓ)

)⊤ (2.37)

Since Φ(ℓ) is symmetric:

= 2R(ℓ)G⊤ − 2R(ℓ)G⊤Y(ℓ)
(
Φ(ℓ)

)⊤(Y(ℓ)
)⊤ (2.38)

and again using (2.29), we finally have:

∂Z
∂Y(ℓ)

= 2R(ℓ)G⊤ − 2R(ℓ)
(
R(ℓ)

)⊤(Y(ℓ)
)⊤

=⇒ ∂Z
∂fℓ
(
X(ℓ);θ(ℓ)

) = 2R(ℓ)G⊤ − 2R(ℓ)
(
R(ℓ)

)⊤(
fℓ
(
X(ℓ);θ(ℓ)

))⊤ (2.39)

Algorithm 2.2 illustrates the DHA method for both training and testing phases. As depicted in

this algorithm, (2.23) is just needed as the first step in the testing phase because the DHA template

G is calculated for this phase based on the training samples. As the second step in the DHA method,

the networks’ parameters (θ(ℓ)) must be updated. This thesis employs the back-propagation algorithm

(backprop() function) [56] as well as Lemma 2.6 for this step. In addition, finishing condition is

defined by tackling errors in last three iterations, i.e. the average of the difference between each
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Algorithm 2.2 Deep Hyperalignment (DHA)
Input: Data X(i), i = 1:S, Regularized parameter ϵ, Number of layers C, Number of units U (m) for

m = 2:C, HA template Ĝ for testing phase (default ∅), Learning rate η (default 10−4 [42]).

Output: DHA mappings R(ℓ) and parameters θ(ℓ), HA template G just from training phase

Method:

01. Initialize iteration counter: m← 1 and θ(ℓ) ∼ N (0, 1) for ℓ = 1:S.

02. Construct fℓ
(
X(ℓ);θ(ℓ)

)
based on (2.17) and (2.18) by using θ(ℓ), C, U (m) for ℓ = 1:S.

03. IF (Ĝ = ∅) THEN % The first step of DHA: fixed θ(ℓ) and calculating G and R(ℓ) ↓

04. Generate Ã by using (2.20) and (2.22).

05. Calculate G by applying Incremental SVD [55] to Ã = GΣ̃Ψ̃⊤.

06. ELSE

07. G = Ĝ.

08. END IF

09. Calculate mappings R(ℓ), ℓ = 1:S by using (2.23).

10. Estimate error of iteration γm =
∑S

i=1

∑S
j=i+1

∥∥∥fi(X(i);θ(i)
)
R(i) − fj

(
X(j);θ(j)

)
R(j)

∥∥∥2
F
.

11. IF
(
(m > 3) and (γm ≥ γm−1 ≥ γm−2)

)
THEN % This is the finishing condition.

12. Return calculated G, R(ℓ), θ(ℓ)(ℓ = 1:S) related to (m-2)-th iteration.

13. END IF % The second step of DHA: fixed G and R(ℓ) and updating θ(ℓ) ↓

14. ∇θ(ℓ) ← backprop
(
∂Z/∂fℓ

(
X(ℓ);θ(ℓ)

)
, θ(ℓ)

)
by using (2.25) for ℓ = 1:S.

15. Update θ(ℓ) ← θ(ℓ) − η∇θ(ℓ) for ℓ = 1:S and thenm← m+ 1

16. SAVE all DHA parameters related to this iteration and GO TO Line 02.

pair correlations of aligned functional activities across subjects (γm for last three iterations). In other

words, DHA will be finished if the error rates in the last three iterations are going to be the worst.

Further, a structure (nonlinear function for componentwise, and numbers of layers and units) for the

deep network can be selected based on the optimum-state error (γopt) generated by training samples

across different structures (see Experiment Schemes in the supplementary materials).

2.5 Experiments

The empirical studies are reported in this section. Like previous studies [4, 9, 11, 12, 16], we

employ the linear ν-SVM algorithms [57] for generating the classification model. Indeed, we use the

27



Functional Alignment and Feature Learning with Neuroimaging Data

binary ν-SVM for datasets with just two categories of stimuli and multi-class ν-SVM [4, 5, 57] with

one-vs-all strategy as the multi-class approach. In addition, leave-one-subject-out cross-validation is

utilized for partitioning all datasets except data 107 to the training set and testing set. In dataset 107,

we have used leave-four-subject-out cross-validation because there are 48 subjects and the number

of samples in one subject is not enough for testing set. Different HA methods are employed for

functional aligning, and then themapped neural activities are used to generate the classificationmodel.

The performances of the proposed methods are compared with the ν-SVM algorithm as the baseline,

where the features are used after anatomical alignment without applying any hyperalignmentmapping.

The performance of other classification techniques will be analyzed in Chapter 5. Furthermore, the

performances of the Regularized HA (RHA) [11] is reported as the basic hyperalignment technique,

where RHA algorithm is optimized by employing novel Generalized CCA approach proposed in [54].

In addition, regularized parameters (α, β) in RHA are optimally assigned based on [11]. Moreover,

Linear Discriminant Analysis (LDA) is employed for functional alignment as a supervised alternative

to compare with LDHA. Also, the result of Shared Response Model (SRM) [9, 18] is compared

with the proposed methods. As another deep-learning-based alternative for functional alignment, the

performance of CAE [16] is also compared with the proposed method. Like the original paper [16],

this thesis employs k1 = k3 = {5, 10, 15, 20, 25}, ρ = {0.1, 0.25, 0.5, 0.75, 0.9}, λ = {0.1, 1, 5, 10}.

Then, aligned neural activities (by using CAE) are applied to the classification algorithm same as

other HA techniques. This thesis follows the CAE setup to set the same settings in the DHA method.

Consequently, three hidden layers (C = 5) and the regularized parameters ϵ = {10−4, 10−6, 10−8}

are employed in the DHA method. In addition, the number of units in the intermediate layers are

considered U (m) = KVnew, wherem = 2:C-1, C is the number of layers, Vnew denotes the number of

aligned features, andK is the number of stimulus categories in each dataset1. Further, three distinctive

activation functions are employed, i.e. Sigmoid (g(x) = 1/1 + exp(−x)), Hyperbolic (g(x) = tanh(x)),

and Rectified Linear Unit or ReLU (g(x) = ln(1 + exp(x))). In this thesis, the optimum parameters

for DHA and CAE methods are reported for each dataset. Moreover, all algorithms are implemented

1Although we can use any settings for DHA, we empirically figured out this setting is acceptable to seek an optimum solution.

Indeed, we followed CAE setup in the network structure but used the number of categories (K) rather than a series of parameters. In

the current format of DHA, we just need to set the regularized constant and the nonlinear activation function, while a wide range of

parameters must be set in the CAE.
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by Python 3 on a PC with certain specifications1 by authors in order to generate experimental results.

2.5.1 Performance Analysis

Like previous studies [2, 9, 16, 18], numbers of aligned features are considered equal to Vnew =

min
(
V, T

)
in this section, where this setting can rapidly improve stability of aligned features [9].

Table 2.1 illustrates the benchmarking of different HA methods based on post-aligned classification

accuracy in percentage (%). In data R105 and W105, the best results for CAE are generated by

the following parameters k1 = k3 = 25, ρ = 0.9, λ = 5 and for DHA by using ϵ = 10−6 and

Sigmoid function. In dataset R107 andW107, the best results for CAE are generated by the following

parameters k1 = k3 = 10, ρ = 0.5, λ = 10 and for DHA by using ϵ = 10−6 and ReLU function.

In data R232 and W232, the best results for CAE are generated by following parameters k1 = k3 =

20, ρ = 0.9, λ = 5 and for DHA by using ϵ = 10−8 and Sigmoid function. In data W001, the

best results for CAE are generated by following parameters k1 = k3 = 10, ρ = 0.75, λ = 1 and

for DHA by using ϵ = 10−4 and ReLU function. In data W002D and W002P, the best results for

CAE are generated by following parameters k1 = k3 = 15, ρ = 0.5, λ = 5 and for DHA by using

ϵ = 10−4 and Sigmoid function. In data W005, the best results for CAE are generated by following

parameters k1 = k3 = 20, ρ = 0.75, λ = 1 and for DHA by using ϵ = 10−8 and Hyperbolic

function. In the rest of datasets, DHA with Sigmoid function generates better results in comparison

with other nonlinear activation functions. In data W011D, the best results for CAE are generated by

following parameters k1 = k3 = 5, ρ = 0.1, λ = 10 and for DHA by using ϵ = 10−4. In dataset

W011P, we have used the same parameters except k1 = k3 = 10. In dataset W017, the best results

for CAE are generated by following parameters k1 = k3 = 10, ρ = 0.9, λ = 5 and for DHA by

using ϵ = 10−6. In data W052R and W052W, the best results for CAE are generated by following

parameters k1 = k3 = 25, ρ = 0.2, λ = 0.1 and for DHA by using ϵ = 10−4. In dataset W102, the

best results for CAE are generated by the following parameters k1 = k3 = 5, ρ = 0.5, λ = 5 and

for DHA by using ϵ = 10−4. In data W116A and W116V, the best results for CAE are generated

by the following parameters k1 = k3 = 20, ρ = 0.25, λ = 1 and for DHA by using ϵ = 10−8. In

dataset W164, the best results for CAE are generated by the following parameters k1 = k3 = 15, ρ =

0.24, λ = 0.1 and for DHA by using ϵ = 10−6. In data W231, the best results for CAE are generated
1CPU = Xeon E5-2630, RAM = 64GB, GPU = GeForce TITAN X, OS = KDE Neon 16.04.3, CUDA = 9.0, CuDNN = 7.0.5,

Python = 3.6.5, Pip = 9.0.3, Numpy = 1.14.2, Scipy = 1.0.1, Scikit-Learn = 0.19.1, Tensorflow = 1.7.0, Theano = 0.9.0.
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Table 2.1 Accuracy of HA methods in post-alignment classification (max±std)

Unsupervised Supervised

Datasets ν-SVM RHA SRM CAE DHA LDA LDHA

R105 18.21±2.32 24.90±0.04 35.64±0.05 38.06±0.06 43.76±0.23 37.49±0.03 52.08±0.11

R107 27.71±3.86 82.41±0.63 40.51±3.32 45.08±0.34 45.87±0.01 38.06±0.32 49.26±0.62

R232 28.12±1.87 31.39±1.20 37.42±0.82 42.75±0.93 45.36±0.07 41.09±0.18 47.24±0.52

W001 26.45±0.31 35.74±0.21 35.00±0.64 39.57±0.33 42.14±0.14 32.81±0.94 45.95±0.97

W002D 63.81±2.09 66.72±1.12 73.02±0.60 76.22±0.08 80.04±0.00 64.95±0.37 77.28±0.53

W002P 65.21±1.51 70.55±0.98 71.41±0.71 79.48±0.06 82.56±0.01 68.70±1.04 79.29±0.37

W005 33.59±1.33 42.05±0.24 50.32±0.79 53.24±0.15 60.32±0.05 42.00±0.10 59.12±0.62

W011D 42.70±0.90 62.88±1.70 60.60±0.57 65.07±0.13 70.43±0.05 67.83±0.81 71.99±0.16

W011W 30.85±0.72 35.61±0.17 37.29±0.78 36.03±0.02 39.05±0.02 34.92±0.79 41.22±0.28

W017 20.63±0.94 22.87±0.02 32.83±0.17 48.96±0.14 40.26±0.10 43.16±1.03 42.19±1.20

W052R 52.40±1.42 59.93±0.13 63.27±0.39 70.62±1.04 78.45±0.92 67.43±1.5 69.69±0.93

W052W 54.07±0.82 60.92±0.06 60.07±0.58 69.92±0.03 74.40±0.04 65.02±0.81 70.37±1.08

W102 50.50±0.94 57.56±0.62 69.44±1.31 79.21±0.72 83.92±0.24 57.10±0.94 68.02±0.69

W105 16.81±1.77 24.65±0.62 30.06±0.19 35.49±0.26 40.97±0.07 33.92±0.59 44.66±0.37

W107 30.69±2.04 47.42±0.94 49.52±0.95 57.04±0.27 69.32±0.01 49.03±0.71 71.39±0.76

W116A 59.30±2.72 65.19±0.38 68.00±0.41 75.29±0.50 85.03±0.05 62.39±0.93 61.38±0.85

W116V 60.16±0.23 62.27±0.4 65.27±0.83 77.24±0.30 89.92±0.01 65.49±0.61 70.35±0.91

W164 53.54±0.53 64.68±0.65 73.82±0.99 70.16±0.18 91.45±0.03 69.23±0.22 82.17±0.35

W231 30.62±1.20 58.55±0.54 62.21±0.88 63.42±0.95 67.15±0.05 61.39±0.62 71.18±0.72

W232 26.79±0.52 40.21±0.73 47.66±0.29 50.37±0.30 55.17±0.06 35.14±0.84 67.28±0.93

by the following parameters k1 = k3 = 15, ρ = 0.75, λ = 1 and for DHA by using ϵ = 10−4. It

is worth noting that our empirical studies show that DHA with Sigmoid activation function mostly

generates acceptable and stable results in comparison with other activation functions. As Table 2.1

demonstrated, the performances of classification analysis without HA method are significantly low

and near to random sampling. Further, while DHA has generated better performance in comparison

with other unsupervised methods, LDHA significantly improves the performance of classification

analysis, when it employs supervision information to align the multi-subject neural activities. Indeed,

DHA illustrates better performance for binary datasets, and LDHA has better accuracy for multi-class

problems.
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Figure 2.3 Runtime Analysis

2.5.2 Runtime Analysis

This section analyzes the runtime of the proposed approaches and other HA methods by em-

ploying ROI-based datasets. As mentioned before, all results in this section are generated by using a

PC with certain specifications. Figure 2.3 illustrates the runtime of the mentioned techniques, where

runtime of other methods are scaled based on the DHA (runtime of DHA is considered as the unit). As

depicted in this figure, CAE generated the worst runtime because it concurrently employs modified

versions of SRM and SearchLight for functional alignment. Further, LDA also includes high time

complexity because of it must apply matrix decomposition for each category separately. By consid-

ering the performance of the DHA method in the previous sections, it generates acceptable runtime

among unsupervised approaches. Further, LDHA has better runtime in comparison with LDA be-

cause it uses the supervised common space and does not need to apply matrix decomposition for each

category separately. It is worth noting that runtime of whole-brain datasets has the same tendency.

2.6 Conclusion

One of the main challenges in fMRI studies is using multi-subject datasets. On the one hand,

the multi-subject analysis is necessary to estimate the validity of the generated results across subjects.

On the other hand, analyzing multi-subject fMRI data requires accurate functional alignment between

neuronal activities of different subjects for improving the performance of the final results. Hyperalign-

ment (HA) is one of the most effective functional alignment methods, which can be formulated as a

CCA problem for aligning neural activities of different subjects to a common space.
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As the first challenge, the HA solution in MVP analysis may not be optimum because it mostly

utilizes the unsupervised CCA techniques for functional alignment. This thesis proposes the Local

Discriminant Hyperalignment (LDHA) as a novel supervised HA solution, which employs the concept

of locality in machine learning for improving the performances of both functional alignment and

MVP analysis. In a nutshell, the proposed method firstly generates two sets for each category of

stimuli, i.e. the set of homogeneous stimuli as within-class neighborhoods and the set of stimuli from

distinct categories as between-class neighborhoods. Then, these two sets are used to provide a better

HA solution, where the correlation between the homogeneous stimuli is maximized, and also the

correlation between different categories of stimuli is near to zero.

As the second contribution, we also extended a deep approach for hyperalignment methods in

order to provide accurate functional alignment in multi-subject fMRI analysis. Deep Hyperalignment

(DHA) can handle fMRI datasets with nonlinearity, high-dimensionality (broad ROI), and a large

number of subjects. Indeed, DHA is parametric and uses rank-m SVD and stochastic gradient descent

for optimization. Therefore, DHA generates low-runtime on large datasets, and DHA does not require

the training data when the functional alignment is computed for a new subject. Further, DHA is not

limited by a restricted fixed representational space because the kernel in DHA is a multi-layer neural

network, which can separately implement any nonlinear function for each subject to transfer the brain

activities to a common space.

Experimental studies on multi-subject fMRI analysis confirm that while DHA method achieves

superior performance to other unsupervised approaches, LDHA can significantly improve the perfor-

mance of analysis, when supervised information is available.
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Chapter 3. Snapshots Analysis and Multi-Region Ensemble Learning

The fMRI techniques visualize the neural activities by measuring the level of oxygenation or

deoxygenation in the human brain, which is called Blood Oxygen Level Dependent (BOLD) sig-

nals. Technically, these signals can be represented as time series for each subject. Most of the MVP

techniques directly analyze these noisy and sparse time series for understanding which patterns are

demonstrated for different stimuli.

The main idea of the proposed method is so simple. Instead of analyzing whole of the time

series, the proposed approach estimates a snapshot of brain image for each stimulus when the level

of using oxygen is maximized. As a result, this method can automatically decrease the sparsity of

brain image. The proposed method is applied in three stages: firstly, snapshots of brain image are

selected by finding local maximums in the smoothed version of the design matrix. Then, features

are generated in three steps, including normalizing to standard space, segmenting the snapshots in

the form of automatically detected anatomical regions, and removing noise by Gaussian smoothing

in the level of ROIs. Finally, we propose two learning approaches. Indeed, extracted features can

be analyzed by using both unsupervised learning and supervised learning. This thesis proposed a

cluster ensemble approach in order to apply unsupervised learning, where similarities or distances

between neural activities can be compared across subjects. As the supervised alternative, we apply

an ensemble classification (i.e., bagging technique) on binary ℓ1-regularized SVM classifiers, where

they are created by employing each of neural activities in the level of anatomical regions, i.e., each

snapshot represents neural activities for a unique stimulus.

3.1 Unsupervised Learning

As an unsupervised method, Clustering discovers meaningful patterns in the non-labeled data

sets. There is a wide range of studies, which try to increase the performance of clustering algorithms.

For instance, Zhang et al. introduced a multi-manifold regularized nonnegative matrix factoriza-

tion framework (MMNMF) which can preserve the locally geometrical structure of the manifolds for

multi-view clustering [58]. Anyway, individual clustering algorithms provide different accuracies in
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a complex data set because they generate the clustering results by optimizing a local or global function

instead of natural relations between data points in each data set [59, 60].

Generally, a cluster ensemble has two important steps: Firstly, generating individual clustering

results by using different algorithms and changing the number of their partitions. Then, combining

the primary results and generating the final ensemble. This step is performed by consensus functions

(aggregating mechanism) [59, 61].

The idea that not all partitions are suitable for cooperating to generate the final clustering was

proposed in CES [62]. Instead of combing all achieved individual results, CES can combine a selected

group of best individual results according to consensus metric(s) from the ensemble committee in or-

der to improve the accuracy of final results [62–65]. Fern and Lin developed a method to effectively

select individual clustering results for ensemble and the final decision [62]. Azimi et al. proved that

diversity maximization is not an effective approach in some real-world applications. They explored

that the thresholding procedure must be done based on the complexity and quality of data sets [65]. Jia

et al. proposed SIM for diversity measurement, which works based on the Normalized Mutual Infor-

mation (NMI) [66]. Romano et al. proposed Standardized Mutual Information (SMI) for evaluating

clustering results [67].

Yousefnezhad et al. introduced independency metric instead of quality metric for evaluating the

process of solving a problem in the CES [36, 38]. Alizadeh et al. have concluded the disadvantages

of NMI as a symmetric criterion. They used the APMM1 and Maximum (MAX) metrics to measure

diversity and stability, respectively, and suggested a new method for building a co-association matrix

from a subset of base cluster results [63, 64]. Alizadeh et al. introduced Wisdom of Crowds Cluster

Ensemble (WOCCE), which is a novel method base on a theory in social science [64]. Although,

this method can generate high performance and more stable results in comparison with other CES

methods, using a wide range of thresholds and employing different types of clustering algorithms for

generating individual results are two main problems in this method. Alizadeh et al. used A3, which is

based on Shannon’s entropy, for diversity evaluation; and Basic Parameter Independency (BPI), which

uses initialized values of individual clustering algorithms such as random seeds in the first iterative

of k-means, for independency evaluation. In addition, they introduced the feedback mechanism for

generating the high-quality results [64].

1Alizadeh-Parvin-Moshki-Minaei
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There are some cluster ensemble approaches focused on rest-mode fMRI analysis. Baumgart-

ner et al. introduced a resampling technique to validate the results of exploratory fuzzy clustering

analysis [68]. Sato et al. introduced a novel approach called cluster Granger analysis (CGA) to study

connectivity between ROIs. The main aim of this method was to employ multiple eigen–time series

in each ROI to avoid temporal information loss during identification of Granger causality [69]. Bellec

et al. developed a generic statistical framework to quantify the stability of such resting-state networks

(RSNs), which was implemented with k-means clustering [70]. Galdi et al. evaluated the applicabil-

ity of clustering based techniques to the problem of feature extraction in resting state fMRI analysis

[71].

As a graph based clustering methods, spectral clustering generates high-performance results

when it is applied to different applications; i.e. from image segmentation to community detection

arena. Kuo et al. introduced a new method for automating the process of Laplacian creation in the

medical applications; especially for fMRI segmentation where this method used standard Laplacians

perform poorly [72]. Chen et al. proposed a clustering algorithm which is based graph clustering and

optimizing an appropriate weighted objective, where larger weights are given to observations (edge

or no-edge between a pair of nodes) with lower uncertainty [12]. Gao et al. introduced a graph-based

consensus maximization (BGCM) method for combining multiple supervised and unsupervised mod-

els. This method consolidated a classification solution by maximizing the consensus among both

supervised predictions and unsupervised constraints [73].

3.2 Supervised Learning

There are three different types of studies for decoding stimuli in the human brain. Pioneer studies

just focused on recognizing special regions of the human brain, such as inanimate objects [74], faces

[75], visually illustration of words [76], body parts [77], and visual objects [78]. Although they

proved that different stimuli can provide distinctive responses in the brain regions, they cannot find

the deterministic locations (or patterns) related to each category of stimuli.

The next group of studies developed correlation techniques in order to understand the similarity

(or difference) between distinctive stimuli. Haxby et al. employed brain patterns located in Fusiform

Face Area (FFA) and Parahippocampal Place Area (PPA) in order to analyze correlations between

different categories of visual stimuli, i.e. gray-scale images of faces, houses, cats, bottles, scissors,
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shoes, chairs, and scrambled (nonsense) photos [78]. Kamitani and Tong studied the correlations of

low-level visual features in the visual cortex (V1–V4) [79]. In similar studies, Haynes et al. analyzed

distinctive mental states [80] and more abstract brain patterns such as intentions [81]. Rice et al.

proved that not only the brain responses are different based on the categories of the stimuli but also

they are correlated based on different properties of the stimuli. They extracted the properties of visual

stimuli (photos of objects) and calculated the correlations between these properties and the brain

responses. They separately reported the correlation matrices for different human faces and different

objects (houses, chairs, etc.) [82].

The last group of studies proposed the MVPA techniques for predicting the category of visual

stimuli. Cox et al. utilized linear and non-linear versions of Support VectorMachine (SVM) algorithm

[83]. In order to decode the brain patterns, some studies [21, 22, 84] employed classical feature se-

lection (ranking) techniques, such as Principal Component Analysis (PCA) [84], Linear Discriminant

Analysis (LDA) [21], or Independent Component Analysis (ICA) [22], that these method are mostly

used for analyzing rest-state fMRI datasets. Recent studies proved that not only these techniques

cannot provide stable performance in the task-based fMRI datasets [9, 16] but also they had spatial

locality issue, especially when they were used for whole brain functional analysis [16]. Norman et

al. argued for using SVM and Gaussian Naive Bayes classifiers [85]. Kay et al. studied decoded

orientation, position and object category from the brain activities in visual cortex [86]. Mitchell et

al. introduced a new method in order to predict the brain activities associated with the meanings of

nouns [87]. Miyawaki et al. utilized a combination of multiscale local image decoders in order to re-

construct the visual images from the brain activities [88]. In order to generalize the testing procedure

for task-based fMRI datasets, Kriegeskorte et al. proved that the data in testing must have no role in

the procedure of generating an MVPA model [89].

There are also some studies that focused on sparse learning techniques. Yamashita et al. devel-

oped Sparse Logistic Regression (SLR) in order to improve the performance of classification models

[90]. Carroll et al. employed the Elastic Net for prediction and interpretation of distributed neural

activity with sparse models [91]. Varoquaux et al. proposed a small-sample brain mapping by using

sparse recovery on spatially correlated designs with randomization and clustering. Their method is ap-

plied on small sets of brain patterns for distinguishing different categories based on a one-versus-one

strategy [92].
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As the first modern approaches for decoding visual stimuli, Anderson and Oates applied non-

linear Artificial Neural Network (ANN) on brain responses [23]. McMenamin et al. studied sub-

systems underlie Abstract-Category (AC) recognition and priming of objects (e.g., cat, piano) and

Specific-Exemplar (SE) recognition and priming of objects (e.g., a calico cat, a different calico cat,

a grand piano, etc.). Technically, they applied SVM on manually selected ROIs in the human brain

for generating the visual stimuli predictors [25]. Mohr et al. compared four different classification

methods, i.e. L1/L2 regularized SVM, the Elastic Net, and the Graph Net, for predicting different

responses in the human brain. They show that L1-regularization can improve classification perfor-

mance while simultaneously providing highly specific and interpretable discriminative activation pat-

terns [24]. Osher et al. proposed a network (graph) based approach by using anatomical regions of

the human brain for representing and classifying the different visual stimuli responses (faces, objects,

bodies, scenes) [93].

3.3 Snapshots Selection

fMRI time series collected from a subject can be denoted by F ∈ Rt×m, where t is the number

of time samples, and m denotes the number of voxels. Same as previous studies [23–25, 78], F can

be formulated by a linear model as follows:

F = D(β̂)⊺ + ε (3.1)

where D ∈ Rt×p denotes the design matrix, ε is the noise (error of estimation), β̂ ∈ Rm×p denotes the

sets of correlations (estimated regressors) between voxels. The design matrix can be denoted by D =

{d1,d2, . . . , di, . . . , dp}, and the sets of correlations can be defined by β̂ = {β̂1, β̂2, . . . , β̂i, . . . , β̂p}.

Here, di ∈ Rt and β̂i ∈ Rm are the column of design matrix and the set of correlations for i-th

category, respectively. p is also the number of all categories in the experimentF. In fact, each category

(independent tasks) contains a set of homogeneous visual stimuli. In addition, the nonzero voxels in β̂i
represents the location of all active voxels for the i-th category [94]. As an example, imagine during

a unique session for recognizing visual stimuli, if a subject watches 4 photos of cats and 3 photos

of houses, then the design matrix contains two columns; and there are also two sets of correlations

between voxels, i.e. one for watching cats and another for watching houses. Indeed, the final goal of

this section is extracting 7 snapshots of the brain image for the 7 stimuli in this example.
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(a) Block-design experiment
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(b) Event-related experiment

Figure 3.1 Examples of smoothed design matrices

The design matrix can be classically calculated by convolution of time samples (or onsets: S =

{S1,S2, . . . , Si, . . . , Sp}) and Ξ as the Hemodynamic Response Function (HRF) signal, di = Si ∗

Ξ =⇒ D = S ∗ H [78, 94]. In addition, there is a wide range of solutions for estimating β̂ values.

This thesis uses the classical method Generalized Least Squares (GLS) [94] for estimating the β̂ values

where Σ is the covariance matrix of the noise (V ar(ε) = Σσ2 ̸= Iσ2):

β̂ =
(
(D⊺Σ−1D)−1D⊺Σ−1F

)⊺ (3.2)

It is worth noting that we will present a new deep approach for estimating (3.2) in Chapter 4 but we

use the classical GLS approach in this section. Here, each local maximum in di represents a location

where the level of using oxygen is so high. In other words, the stimulus happens in that location. Since

di mostly contains small spikes (especially for event-related experiments), it cannot be directly used

for finding these local maximums. Therefore, this thesis employs a Gaussian kernel for smoothing

the di signal. Now, the interval Ĝ is defined as follows for generating the kernel:

Ĝ =

{
exp

(
−ĝ2

2σ2
G

) ∣∣∣∣ ĝ ∈ Z and − 2⌈σG⌉ ≤ ĝ ≤ 2⌈σG⌉
}

(3.3)

where σG > 0 denotes a positive real number; ⌈.⌉ is the ceiling function; and Z denotes the set of

integer numbers. Gaussian kernel is also defined by normalizing Ĝ as follows:

G =
Ĝ∑
j ĝj

(3.4)

where
∑

j ĝj is the sum of all elements in the interval Ĝ. This section defines the smoothed version

of the design matrix by applying the convolution of the Gaussian kernel G and each column of the

design matrix (di) as follows:

ϕi = di ∗G = (Si ∗ Ξ) ∗G (3.5)

Φ = {ϕ1, ϕ2, . . . , ϕp} (3.6)
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where ϕi = f (Si,Ξ,G). Since the level of smoothness in Φ is related to the positive value in (3.3),

σG = 1 is heuristically defined to generate the optimum level of smoothness in the design matrix.

The general assumption here is the 0 < σG < 1 can create design matrix, which is sensitive to small

spikes. Further, σG > 1 can rapidly increase the level of smoothness, and remove some weak local

maximums, especially in the event-related fMRI datasets. Figure 3.1 illustrates two examples of the

smoothed columns in the design matrix. The local maximum points in the ϕi can be calculated as

follows:

S∗i =
{
arg
Si
ϕi

∣∣∣∣ ∂ϕi

∂Si
= 0 and

∂2ϕi

∂SiSi
> 0

}
(3.7)

where S∗i ⊂ Si denotes the set of time points for all local maximums in ϕi. The sets of maximum

points for all categories can be denoted as follows:

S∗ = {S∗1,S∗2, . . . , S∗i , . . . , S∗p} (3.8)

As mentioned before, the fMRI time series can be also denoted by F⊺ = {f⊺1, f
⊺
2, . . . , f

⊺
j , . . . , f

⊺
t },

where f⊺j ∈ Rm is all voxels of fMRI dataset in the j-th time point. Now, the set of snapshots can be

formulated as follows:

Ψ̂ = {f⊺j | f
⊺
j ∈ F⊺ and j ∈ S∗} = {ψ̂1, ψ̂2, . . . , ψ̂k, . . . ψ̂q} ∈ Rm×q (3.9)

where q is the number of snapshots in the brain image F, and ψ̂k ∈ Rm denotes the snapshot for k-th

stimulus. These selected snapshots are employed in next section for extracting features of the neural

activities. Algorithm 3.3 illustrates the whole of procedure for generating the snapshots from the time

series F.

3.4 Multi-Region Feature Extraction

In this section, the feature extraction is applied in three steps, i.e., normalizing snapshots to

standard space, segmenting the snapshots in the form of automatically detected regions, and removing

noise by Gaussian smoothing in the level of each region. As mentioned before, normalizing brain

image to the standard space can increase the time and space complexities and decrease the robustness

of fMRI analysis, especially in voxel-based methods [1]. On the one hand, most of the previous

studies [24–26, 78] preferred to use original datasets instead of the standard version because of the
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Algorithm 3.3 The Snapshots Selection Algorithm
Input: fMRI time series F, time points (onsets) S, HRF signal H, , Gaussian Parameter σG:

Output: Snapshots Ψ, the sets of correlations β̂:

Method:

1. Generating the design matrix D = S ∗H.

2. Defining F = Dβ̂+ ε.

3. Calculating β̂ by using (3.2).

4. Generating Gaussian kernel by (3.4).

5. Smoothing the design matrix by (3.5).

6. Finding locations of the snapshots by (3.8).

7. Calculating snapshots Ψ̂ by using (3.9).

mentioned problem. On the other hand, this mapping can provide a normalized view for combing

homogeneous datasets. As a result, it can significantly reduce the cost of brain studies and rapidly

increase the chance of understanding how the brain works. Employing brain snapshots rather than

analyzing whole of data can solve the normalization problem.

Normalization can be formulated as a mapping problem. Indeed, brain snapshots are mapped

from Rm space to the standard space Rn by using a transformation matrix for each snapshot. There

is also another trick for improving the performance of this procedure. Since the set β̂i denotes the

locations of all active voxels for the i-th category, it represents the brain mask for that category and

can be used for generating the transform matrix related to all snapshots belong to that category. For

instance, in the example of the previous section, instead of calculating 7 transform matrices for 7

stimuli, we calculate 2 matrices, including one for the category of cats and the second one for the

category of houses. This mapping can be denoted as follows:

Ti: β̂i ∈ Rm → βi ∈ Rn (3.10)

where Ti ∈ Rm×n denotes the transform matrix, βi =
(
(β̂i)⊺Ti

)⊺ is the set of correlations in the
standard space for i-th category. This section utilizes the FLIRT algorithm [95] for calculating the

transform matrix, which minimizes the following objective function:

Ti = argmin(NMI(β̂i,Ref)) (3.11)
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where the function NMI denotes the Normalized Mutual Information between two images [95],

and Ref ∈ Rn is the reference image in the standard space. This image must contain the struc-

tures of the human brain, i.e. white matter, gray matter, and CSF. These structures can improve

the performance of mapping between the brain mask in the selected snapshot and the general form

of a standard brain. In addition, the sets of correlations for all of categories in the standard space

is denoted by β = {β1, β2, . . . , βi, . . . , βp} ∈ Rn×p, and the sets of transform matrices is defined

by T = {T1,T2, . . . ,Ti, . . . ,Tp}. Now, the Select function is denoted as follows to find suitable

transform matrix for each snapshot:(
T∗

j , β∗j
)
= Select(ψ̂j,T, β) = {(Ti, βi) | Ti ∈ T, βi ∈ β ,

ψ̂j is belonged to the i− th category =⇒ ψ̂j ∝ βi ∝ Ti}
(3.12)

where T∗
j ∈ Rm×n and β∗j ∈ Rn are the transform matrix and the set of correlations related to the j-th

snapshot, respectively. Based on (3.12), each normalized snapshot in the standard space is defined as

follows:

T∗
j : ψ̂j ∈ Rm → ψj ∈ Rn =⇒ ψj =

((
ψ̂j

)⊺T∗
j

)⊺
(3.13)

where ψj ∈ Rn is the j-th snapshot in the standard space. Further, all snapshots in the standard space

can be defined by Ψ = {ψ1,ψ2, . . . ,ψj, . . . ,ψq} ∈ Rn×q. As mentioned before, nonzero values in

the correlation sets depict the location of the active voxels. Based on (3.12), this section uses these

correlation sets as weights for each snapshot as follows:

Θj = ψj ◦ β∗j (3.14)

where ◦ denotes Hadamard product, and Θj ∈ Rn is the j-th modified snapshot, where the values of

deactivated voxels (and also deactivated anatomical regions) are zero in this snapshot. As the final

product of normalization procedure, the set of snapshots can be denoted byΘ = {Θ1,Θ2, . . . ,Θj, . . . ,Θq}.

Further, each snapshot can be defined in the voxel level as follows, where θkj is the k-th voxel of j-th

snapshot:

Θj =
[
θ1j , θ2j , . . . , θkj , . . . , θnj

]
(3.15)

The next step is segmenting the snapshots in the form of automatically detected regions. Now,

consider anatomical atlas A ∈ Rn = {A1,A2, . . . ,Aℓ, . . . ,AL}, where ∩L
ℓ=1{Aℓ} = ∅, ∪L

ℓ=1{Aℓ} =
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Figure 3.2 Examples of smoothed anatomical regions (X(j,ℓ)) in the voxel level

A, and L is the number of all regions in the anatomical atlas. Here, Aℓ denotes the set of voxel

locations in the snapshots for the ℓ-th anatomical region. A segmented snapshot based on the ℓ-th

region can be denoted as follows:

Θ(j,ℓ) = {θkj | θkj ∈ Θj and k ∈ Aℓ} (3.16)

where Θ(j,ℓ) ⊂ Θj is the subset of voxels in the snapshot Θj , which these voxels are belonged to the

the ℓ-th anatomical region. In addition, the sets of all anatomical regions in the j-th snapshot can

be defined by Θj = {Θ(j,1) ∪ Θ(j,2) ∪ · · · ∪ Θ(j,ℓ) ∪ · · · ∪ Θ(j,L)} =
[
θ1j , θ2j , . . . , θkj , . . . , θnj

]
. The

automatically detected active regions can be also defined as follows:

Θ∗
j =

{
Θ(j,ℓ)|Θ(j,ℓ) ⊂ Θj and

∑
θk
(j,ℓ)

∈Θ(j,ℓ)

|θk(j,ℓ)| ̸= 0

}
(3.17)

where
∑

θk
(j,ℓ)

∈Θ(j,ℓ)
|θk(j,ℓ)| represents sum of all voxels in theΘ(j,ℓ). Based on (3.17), active regions in

the j-th snapshot can be defined as the regions with non-zero voxels because values of all deactivated

voxels are changed to zero by using (3.14). The last step is removing noise by Gaussian smoothing

in the level of anatomical regions. As the first step, a Gaussian kernel for each anatomical region can

be defined as follows:

σℓ =
N2

ℓ

5N2
ℓ logNℓ

V̂ℓ =

{
exp

(
−v̂2

2σℓ

) ∣∣∣∣ v̂ ∈ Z and − 2⌈σℓ⌉ ≤ v̂ ≤ 2⌈σℓ⌉
}

(3.18)

Vℓ =
V̂ℓ∑
j v̂j

where Nℓ denotes the number of voxels in ℓ-th region, and
∑

j v̂j is sum of all values in the interval

V̂ℓ. Indeed, the level of smoothness is related to σℓ, which is heuristically calculated for each region
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Algorithm 3.4Multi-Region Feature Extraction Algorithm
Input: Snapshots Ψ, correlations β̂, Ref image, Atlas A:

Output: Smoothed snapshots X:

Method:

1. For each β̂i, calculate transform matrix by (3.11).

2. Mapping ψ̂j to standard space by T∗
j and (3.13).

3. Detecting active voxels for each snapshot by (3.14).

4. Segmenting each snapshot by (3.16).

5. Finding active regions for each snapshot by (3.17).

6. Generating Gaussian kernel by (3.18).

7. Smoothing snapshots by (3.19).

based on the number of voxels in that region. As the second step, the smoothed version of the j-th

snapshot can be defined as follows:

∀ℓ = L1 . . . L2→ X(j,ℓ) = Θ(j,ℓ) ∗ Vℓ,

X(j) = {X(j,L1), . . . ,X(j,ℓ), . . .X(j,L2)}
(3.19)

where Θ(j,ℓ) ∈ Θ∗
j is the ℓ-th active region of j-th snapshot, and ∗ denotes the convolution between

the active region and the Gaussian kernel related to that region. Further, L1 and L2 are the first and

the last active regions in the snapshot, where 1 ≤ L1 ≤ L2 ≤ L. Figure 3.2 demonstrates two

examples of smoothed anatomical regions in the voxel level. All smoothed snapshots can be defined

by X = {X(1),X(2), . . . ,X(j), . . . ,X(q)}. Moreover, Algorithm 3.4 shows the whole of procedure for

extracting features.

3.5 Weighted Spectral Cluster Ensemble (WSCE)

In this section, we develop an unsupervised cluster ensemble approach to compare the similarities

or distances among neural activities of different categories of stimuli. As Figure 3.3 depicted, the

extracted neural activities belong to each anatomical region (X(j,ℓ), j = 1:q) are employed to apply

a base clustering algorithm. Then, the final partitioning is generated by using the results of these

algorithms. Indeed, the proposed method firstly generates π(ℓ) ∈ {1, . . . , p}q, ℓ ∈ [L1, L2] as the

base clustering results and then combines these results to partition neural activities to p categories of

43



Functional Alignment and Feature Learning with Neuroimaging Data

Figure 3.3 Weighted Spectral Cluster Ensemble (WSCE)

stimuli. Here, π(ℓ) is the ℓ-th base result related to the ℓ-th anatomical region in the reference set

(Π = {π(ℓ)}, ℓ ∈ [L1, L2]).

3.5.1 Two Kernels Spectral Clustering (TKSC)

Like other spectral methods, this section calculates the non-symmetric distances (adjacency)

matrix of the neural activities as follows: [96, 97].

Δ(ℓ)
i,j =

 exp
(

−∥X(i,ℓ)−X(j,ℓ)∥2
ℵ2

)
if i ̸= j

0 if i = j
(3.20)

where ∥X(i,ℓ) − X(j,ℓ)∥2 will be calculated by Euclidean distance. Indeed, (3.20) can optimize the

memory usage [96, 97]. The scaling parameter ℵ controls how rapidly affinity Δ(ℓ)
i,j falls off with

the distance between the data points. This thesis uses Ng et al. method for estimating this value

automatically (count non-zero values in each columns of the distance matrix) [96, 97].

This section introduces Two Kernels Spectral Clustering (TKSC) algorithm, which can gener-

ate all base results (Π). Unlike normal clustering algorithms, which just generate a partition as the

clustering result, the TKSC algorithm generates two independent consequences, which are called Par-

titional result and Modular result, for each of the individual clustering results by using two kernels

(π(ℓ) = {π̃(ℓ)
PA, π̃

(ℓ)
MO}). The Partitional result (π̃

(ℓ)
PA) is a partitioning of data points same as the result

of other clustering methods; and the Modular result (π̃(ℓ)
MO) is a network of data points, which can be

represented by a graph. This thesis uses the Modular result as a reference for evaluating the diversity

of generated partition by using community detection methods [98, 99]. Furthermore, the kernel in the

TKSC refers to Laplacian equation in spectral methods because it transforms data points in the new
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environment, especially linear environment for non-linear datasets.

Partitional Kernel: This section uses the following equation for generating Partitional result:

Λ(ℓ)
PA = I−

(
Δ̃(ℓ)
)1/2

Δ(ℓ)
(
Δ̃(ℓ)
)1/2

(3.21)

where I is the identity matrix [96]; the diagonal matrix Δ̃(ℓ) is calculated as follows:

Δ̂(ℓ) =
(
Δ(ℓ)1q + 10−10

) − 1/2

(3.22)

Δ̃(ℓ)
i,j =

 Δ̂(ℓ)
i,j if i = j

0 if i ≠ j
(3.23)

where ones matrix 1q ∈ 1q×q. Now, the eigendecomposition is performed for calculating eigenvectors

of Λ(ℓ)
PA:

E(ℓ) = eigens
(
Λ(ℓ)

PA

)
(3.24)

where the matrix E(ℓ) is the eigenvectors of Partitional Kernel. The coefficient Ẽ(ℓ) will be defined

for normalizing the matrix E(ℓ):

Ẽ(ℓ)
i =

(
q∑

i=1

E(ℓ)
i1 × E

(ℓ)
i2

) 1
2

+ 10−20 (3.25)

where E(ℓ)
ij shows the i-th row and j-th column of the matrix E(ℓ); and 10−20 is used for omitting

the effect of zeros in the matrix E(ℓ). Also, q denotes the number of snapshots (Ẽ(ℓ) ∈ Rq). The

normalized matrix of eigenvectors will be calculated as follows:

ê
(ℓ)
ij = e

(ℓ)
ij Ẽ

(ℓ)
i (3.26)

where ê(ℓ)ij and e
(ℓ)
ij denote the cell located in the i-th row and j-th column of matrices Ê(ℓ) and E(ℓ),

respectively; and Ẽ(ℓ)
i is the i-th row of the vector Ẽ(ℓ) which is used for normalization. The Partitional

result of TKSC will be calculated by applying the simple k-means [36–38] on the matrix Ê(ℓ) as

follows:

π̃
(ℓ)
PA = kmeans(Ê(ℓ), p) (3.27)

Modular Kernel: This section uses the following equation for generating Modular result:

π̃
(ℓ)
MO =

1

max
(
Δ̃(ℓ) − Δ(ℓ)

) Δ̃(ℓ) − Δ(ℓ) (3.28)
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Algorithm 3.5 Two Kernels Spectral Clustering (TKSC)
Input: Neural activities X(∗,ℓ), Number of clusters p

Output: Partitional result π̃(ℓ)
PA, Modular result π̃(ℓ)

MO

Method:

1. Generate similarity matrix Δ(ℓ) by using X(∗,ℓ) on (3.20).

2. Generate diagonal matrix Δ̃(ℓ) by using Δ(ℓ).

3. Λ(ℓ)
PA by applying Δ(ℓ) and Δ̃(ℓ) on (3.21).

4. Generate the matrix E(ℓ) as eigenvectors of Λ(ℓ)
PA.

5. Generate Ê(ℓ)
ij as normalized E(ℓ) by using (3.26).

6. Generate π̃(ℓ)
MO by applying Δ(ℓ) and Δ̃(ℓ) on (3.28).

7. π̃
(ℓ)
PA = kmeans(Ê(ℓ), p)

8. Return π̃(ℓ)
PA and π̃(ℓ)

MO

where the function max finds the biggest value in the matrix Δ̃(ℓ) − Δ(ℓ). Here, we consider π̃(ℓ)
MO is

an adjacency matrix of graph representation of the neural activities belogn to ℓ-th region. Further, all

values in the matrix Λ(ℓ)
MO, which is called Modular result, are between zero and one. Algorithm 3.5

shows the pseudo code of the TKSC method.

3.5.2 Weighted Evidence Accumulation Clustering (WEAC)

Tracing errors can control similarity and repetition of specific answers in clustering problems.

There is a wide range of metrics, which are based on Shannon’s entropy[37, 38], for evaluating the

diversity of individual results in the ensemble methods, such as MI [59], NMI [61], APMM [63],

MAX [64], and SMI [67]. Shannon’s entropy uses the logarithm of the probability of individual

results for evaluating the diversity, but there is no mathematical proof that all real-world datasets

have logarithmic behavior. In community detection [98, 99], Modularity, which is based on Expected

Value, was proposed for solving this problem. Recently, many papers proved that modularity [98, 99]

could estimate the diversity on graph-based datasets such as brain networks better than entropy-based

methods. Unfortunately, modularity can measure the diversity only for graph data [98]. This thesis

proposes TKSC, which can generate a graph based result, called Modular result, for any types of

datasets in the real-world application. Since modularity was defined for community detection area,

this thesis introduces a redefined version of modularity metric for general clustering problems, which
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is called NormalizedModularity (NM ). It is used for evaluating the diversity of the individual results

based on the Modular result of the TKSC as follows:

O = NM(P,M) =
1

2
+

1

4
∑

MMij

∑
ij

[
Γ(Mij)−

δ(Mi)δ(Mj)

2
∑

MMij

]
(1− Γ(Pi − Pj)) (3.29)

Γ(x) =

 0 if x = 0

1 Otherwise
(3.30)

where P is a Partitional result, M denotes a Modular results, δ(Mℓ) shows the degree of ℓ-th node

in the graph of matrixM (how many rows contains non-zero value in the columns ℓ), Γ(x) is zero if

and only if vector x is a zero vector. Indeed, we must calculateO(ℓ) = NM(π̃
(ℓ)
PA, π̃

(ℓ)
MO), ℓ ∈ [L1, L2]

for all active regions, where it is always 0 ≤ NM ≤ 1. Now, we develop Weighted Evidence

Accumulation Clustering (WEAC) for generating the co-association matrix:

ζij =

∑L2
ℓ=L1O

(ℓ)
i +O(ℓ)

j

2q(L2− L1)
(3.31)

whereO(ℓ)
i illustrates the Normalized Modularity related to ℓ-th anatomical region and i-th snapshot.

Further, the final co-association matrix, which is a symmetric matrix, will be generated as follows:

ξ = WEAC(Π) =



ζ11 ζ12 . . . ζ1q

ζ21 ζ22 . . . ζ2q
... ... ... ...

ζi1 ζi2 ζij ζiq
... ... ... ...

ζq1 ζq2 . . . ζqq


(3.32)

where q is the number of the snapshots; and ζij denotes the final aggregation for i-th and j-th stimuli.

Algorithm 3.6 illustrates the pseudo code of the proposed method. In this algorithm, X is the neural

activities; p is the number of clusters in the final result (i.e., number of stimuli categories). A Euclidean

metric alsomeasures the distances. The TKSC function builds the partitions andmodules of individual

results, and NM function evaluates these results. Then, the evaluated results will be added to reference

set (Π). The Average-Linkage function creates the final ensemble according to the average linkage

method [36–38, 63, 64].
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Algorithm 3.6Weighted Spectral Cluster Ensemble (WSCE)
Input: Data points X, Number of clusters p

Output: final result Pfinal

Method:

3. FOR ℓ = L1:L2

4. [π̃
(ℓ)
PA, π̃

(ℓ)
MO] = TKSC

(
X(∗,ℓ), p

)
5. O(ℓ) = NM(π̃

(ℓ)
PA, π̃

(ℓ)
MO)

6. Add π̃(ℓ)
PA, π̃

(ℓ)
MO, and O(ℓ) to the reference set Π.

7. END FOR

8. Generate co-association matrix ξ = WEAC(Π)

9. Pfinal = Average-Linkage(ξ)

3.6 Multi-Region Ensemble Learning (MREL)

As a classical classification method, Support Vector Machine (SVM) [100, 101] decreases the

operating risk and can find an optimized solution bymaximizing the margin of error. As a result, it can

mostly generate better performance in comparison with other methods, especially for binary classifi-

cation problems. Therefore, SVM is used in the wide range of studies for creating predictive models

[24–26, 78]. As Figure 3.4 depicted, the final goal of this section is employing the ℓ1-regularization

SVM [100] method for creating binary classification at the level of anatomical region, and then com-

bining these classifiers by using the Bagging algorithm [102] for generating the final predictivemodel.

Asmentioned before, fMRI time series for a subject can be denoted byF. Since fMRI experiment

is mostly multi-subject, this thesis denotes Fu,= 1:U as fMRI time series (sessions) for all subjects,

where U is the number of subjects. In addition, τ =
∑U

u=1 qu is defined as the number of all snapshots

in a unique fMRI experiment. Here qu is the number of snapshots for the u-th subject. Further, the

original ground truth (the title of stimuli such that cats, houses, etc.) for all snapshots is denoted by

Y = {y1, y2, . . . , yj, . . . yτ}, where yj denotes the ground truth for j-th snapshot. Since this thesis

uses a one-versus-all strategy, we can consider that yj ∈ {−1,+1}. This thesis applies following

objective function on automatically detected active regions as the ℓ1-regularization SVM method for
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Figure 3.4 Multi-Region Ensemble Learning (MREL)

creating binary classification in the level of ROIs [24, 100]:

ηℓ: min
Wℓ

C
τ∑

j=1

max(0, 1− yjX(j,ℓ)W(j,ℓ)) + ∥Wℓ∥1 (3.33)

where C > 0 is a real positive number, X(j,ℓ) and yj denote the voxel values of ℓ-th region and the

class label of j-th snapshot, respectively. Further, Wℓ = [W(1,ℓ),W(2,ℓ), . . . ,W(j,ℓ), . . . ,W(τ,ℓ)] is

the generated weights for predicting MVP model based on the ℓ-th active region. Here, ∥W∥1 =

max
j

∑
i |Wij|. The classifier for ℓ-th region is also denoted by ηℓ, where all of these classifiers can

be defined by η = {ηL1, . . . , ηℓ, . . . ηL2}. The final step in the proposed method is combining all

classifiers (η) by Bagging [102] algorithm for generating the MVP final predictive model. Indeed,

Bagging method uses the average of predicted results in (3.33) for generating the final result (ηfinal =∑L2
ℓ=L1 ηℓ) [102, 103]. Algorithm 3.7 shows the whole of procedure in the proposed method by using

Leave-One-Out (LOO) cross-validation in the subject level.

3.7 Experiments

The empirical studies will be presented in this section. We employ the Montreal Neurological

Institute (MNI) 152 T1 4mm [44, 45] as the reference image (Ref) in (3.11) for mapping the extracted

snapshots to the standard space (ψ̂i → ψi). The size of this image in 3D scale is X = 46, Y =

55, Z = 46. Moreover, the Talairach Atlas [43] (including L = 1105 regions) in the standard space

is used in (3.17) for extracting features. Further, all of algorithms are implemented in Python 3 on a
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Algorithm 3.7Multi-Region Ensemble Learning (MREL) by using LOO cross validation
Input: fMRI time series Fu, u = 1:U , Onsets Su, u = 1:U , HRF signal H, Gaussian Parameter σG

(default σG = 1):

Output: MVP performance (ACC,AUC)

Method:

01. FOR u = 1:U

02. Create train set FTr = {Fj|j = 1:U, j ̸= u}.

03. Extract snapshots of FTr by using Algorithm 3.3.

04. Generate features of FTr by using Algorithm 3.4.

05. Train binary classifiers η by using FTr and (3.33).

06. Generate final predictor (ηfinal) by using Bagging.

07. Consider Fu as test set.

08. Extract snapshots for Fu by using Algorithm 3.3.

09. Generate features for Fu by using Algorithm 3.4.

10. Apply test set on the final predictor (ηfinal).

11. Calculate performance of Fu (ACCi, AUCi) [103].

12. END FOR

13. Accuracy: [103]: ACC =
∑U

i=1 ACCi

/
U .

14. AUC [103]: AUC =
∑U

i=1 AUCi

/
U .

PC with certain specifications1 by authors in order to generate experimental results.

3.7.1 Correlation Analysis

The correlations of the extracted features will be compared with the correlations of the original

voxels in this section. Previous studies illustrated that patterns of different Abstract-Categories (ACs)

[25], which is extracted from a suitable feature representation, must provide distinctive correlation

values [25, 82]. Therefore, the main assumption in this section is that better feature representation

(extraction) can improve the correlation analysis, where the correlation between different categories of

visual stimuli must be significantly smaller than the correlation between stimuli belonged to the same

1DEL , CPU = Intel Xeon E5-2630 v3 (8×2.4 GHz), RAM = 64GB, OS = KDE Neon 16.04.4
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Figure 3.5 Correlation analysis for R105 dataset (A) in the voxel level, (B) feature level, for R107 dataset (C) in

the voxel level, (D) feature level.

category. In order to provide a better perspective, the extracted features are compared by considering

two different levels. At the first level, the feature space is compared with the whole of raw voxels

in the original space, where this comparison analyzes the correlation between whole-brain data and

automatically detected anatomical regions. At the second level, the correlation values among different

ACs are compared in the feature space that it shows how much the feature space is well-designed.

This section presents two examples to compare the effect of using snapshots rather than em-

ploying all time points. Figure 3.5 A, and C respectively demonstrate correlation matrix at the voxel

level for the datasets R105, and R107. Further, Figure 3.5 B, and D respectively illustrate the corre-

lation matrix in the feature level for the datasets R105, and R107. Since neural activities are sparse,

high-dimensional and noisy in voxel level, it is so hard to discriminate between different categories

in Figure 3.5 A, and C. By contrast, Figure 3.5 B, and D provided distinctive and informative repre-

sentation when the proposed method used the extracted features.

The correlation between different ACs can also be meaningful in the feature space. In R105 and

R107, the scramble (nonsense) stimuli have a low correlation in comparison with sensible categories.

As another example in R105, human faces are mostly correlated to the photos of cats and houses in

comparison with other objects. Another interesting example is the correlation between meaningful

stimuli (words and objects) and nonsense stimuli (scrambles and consonants) in R107, where the

meaningful stimuli are highly correlated, and their correlations with nonsense stimuli are negative.

Indeed, the noisy and sparse raw voxels are not suitable (wise) in order to train a high-performance

cognitive model. It is worth noting that we have the same tendency for the reset of datasets. In Chapter

4, we will compare all datasets together.
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Figure 3.6 Unsupervised Analysis of different neural activities by using WSCE

3.7.2 Unsupervised Analysis

This section analyzes the neural activities by using unsupervised clustering techniques. Figure

3.6 compares unlabeled neural activities by using NMI metric. In this figure, the results of WCES

are compared with Spectral clustering [96] as a baseline. Further, the performance of Standardized

Mutual Information (SMI) is reported as an NMI-based ensemble technique [67]. As a graph-based

ensemble approach, we compare the proposed method with a graph-based consensus maximization

(BGCM) method [73]. Here, the Gaussian parameter for smoothing the design matrix is considered

σG = 1. Moreover, we apply the neural activities of different snapshots to these methods and then

calculate the average of within-cluster similarity by using NMImetric. As Figure 3.6 depicted, WSCE

generates better performance in comparisonwith othermethods because it uses the anatomical features

of neural activities to improve the clustering analysis. Indeed, WSCE can demonstrate that how much

the neural activities in an Abstract-Category (AC) are similar to each other. In Chapter 4, we develop

new methods in order to compare between-class similarities or differences by employing supervision

information.

3.7.3 Supervised Analysis

The performance of MREL method is compared with prevalent feature selection algorithms,

which were proposed for decoding the distinctive stimuli in the human brain. We first compared the

proposed approach with ℓ1-SVM as a baseline, where the raw neural activities are directly applied
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to this algorithm. Further, our method is compared with Principal Component Analysis (PCA) and

Independent Component Analysis (ICA) as two unsupervised approaches for feature selection. As

a supervised alternative, we also report the performance of Linear Discriminant Analysis (LDA) is

indicated. Here, we firstly select snapshots by using the proposed method and then using the same

number of time points in the mentioned methods in order to select features. This section compares the

performance of thementionedmethods as well as the proposedmethod by using leave-one-subject-out

cross-validation for all dataset except R107 that uses leave-four-subject-out cross-validation. Further,

the Gaussian parameter for smoothing the design matrix is considered σG = 1. The effect of different

values of this parameter on the performance of the proposed method will be discussed in the next

selection. Table 3.1 illustrates the accuracy of classification analysis by using these feature selection

techniques, where the proposedmethod generates better performance in comparisonwith other feature

selection techniques. Indeed, our method uses snapshots with the higher probability of representing

neural activities. Thus, it can present better discrimination to apply a classification analysis.

3.7.4 Parameters Analysis

In this section, the effect of different parameters on the performance of the proposed feature

selection method will be analyzed. As the first parameter, σG in (3.3) is heuristically defined to

change the level of smoothness in the design matrix. The general assumption here is the 0 < σG < 1

can create design matrix, which is sensitive to small spikes. As a result, the detected local maximums

and also the number of snapshots will be more than the real number. Moreover, σG > 1 can rapidly

increase the level of smoothness, and also can remove some weak local maximums, especially in the

event-related fMRI datasets. Figure 3.7.A illustrates the effect of different σG values on the number

of wrongs detected snapshots in the region-based datasets. As depicted in this figure, the σG = 1

generated better results in comparison with other values. This is the main reason that this paper uses

σG = 1 as the default value in the empirical studies.

The next parameter that can affect the performance of the proposed method is the distance metric

in the objective function (3.11) for mapping functional snapshots to the standard space. Figure 3.7.B

and C demonstrate two examples of the error of registration (normalization) in the detected snapshots.

Here, gray parts show the anatomical atlas, the colored parts (yellow and blue) define the functional

activities, and also the red rectangles illustrate the error areas after registration. Indeed, these errors
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Table 3.1 Accuracy of classification analysis for evaluating different feature selection techniques (max±std)

Datasets ℓ1-SVM PCA ICA LDA MREL

R105 16.72±1.89 19.04±0.34 21.76±0.30 35.20±0.38 34.99±0.54

R107 26.39±2.60 28.06±0.45 30.47±0.07 32.04±0.07 40.27±0.93

R232 30.65±0.79 33.34±1.43 36.45±0.28 40.69±0.16 52.49±0.07

W001 25.47±0.36 29.39±0.14 28.54±0.17 33.07±0.96 37.19±0.63

W002D 61.69±0.86 62.41±0.63 65.61±0.13 66.75±0.73 67.84±0.76

W002P 64.98±0.15 67.68±0.36 67.34±0.72 70.67±0.53 73.25±0.12

W005 32.80±0.93 35.59±0.84 38.59±0.33 40.19±0.73 45.16±0.59

W011D 41.26±0.13 63.21±0.13 60.08±0.71 66.08±0.22 68.81±0.43

W011W 31.37±0.54 31.97±0.02 32.62±0.63 33.20±0.51 35.34±0.68

W017 22.31±0.72 30.27±0.11 30.23±0.50 40.95±0.65 45.69±0.09

W052R 54.83±0.17 63.76±0.98 62.32±0.81 68.19±0.13 70.90±0.51

W052W 53.42±0.99 60.01±0.90 58.83±0.46 63.84±0.16 67.76±0.30

W102 52.33±0.46 53.93±0.45 54.91±0.30 58.19±0.11 71.93±0.25

W105 17.72±0.10 22.62±0.05 22.65±0.93 38.68±0.08 37.30±0.48

W107 32.24±1.61 32.58±0.76 38.42±0.89 45.73±0.82 51.16±0.87

W116A 56.46±0.19 61.65±0.86 61.86±0.69 64.94±0.73 65.98±0.95

W116V 58.03±0.45 61.45±0.99 63.97±0.24 65.21±0.96 68.32±0.32

W164 50.82±0.15 62.06±0.26 60.23±0.07 67.05±0.35 71.86±0.38

W231 27.66±0.92 45.34±0.49 43.65±0.15 55.38±0.84 63.77±0.55

W232 29.97±0.46 31.68±0.22 30.25±0.57 32.41±0.49 37.63±0.26

can be formulated as the nonzero areas in the snapshots which are located in the zero area of the

anatomical atlas (the area without region number). The performance of objective function (3.11) on

region-based datasets is analyzed in Figure 3.7.D by using different distance metrics, i.e. Woods

function (W), Correlation Ratio (CR), Joint Entropy (JE), Mutual Information (MI), and Normalized

Mutual Information (NMI) [61, 95]. As depicted in this figure, the NMI generated better results in

comparison with other metrics.

3.7.5 Representing Neural Activities

In this section, we visualize some samples of neural activities that are selected as the snapshots in

data R105. As Figure 3.8 depicted, while some of these neural activities are significantly distinctive,
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Figure 3.7 Parameters Analysis: (A) The effect of different σG values on the # of wrong detected snapshots, (B)

and (C) two examples for the error of registration (normalization): the red rectangles illustrate the error areas after

registration, (D) The effect of different objective functions in (3.11) on the error of registration.
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Figure 3.8 Representing neural activities of selected snapshots in data R105

the rest of them are highly correlated. However, the proposed feature selection technique segment

these neural activities to different anatomical regions, and then we select active regions. Thus, the

sparsity of these features is significantly reduced in within region. Indeed, this is the main motivation

for us to analyze the features in the anatomical region level rather than the whole of data at same time.
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Figure 3.9 Unsupervised similarity analysis based on WSCE

3.7.6 Visualizing Unsupervised Similarity

In this section, we visualize the unsupervised similarity of the region-based datasets by using the

generated WEAC matrix in the WSCE method. Figure 3.9 illustrates the dendrogram of the neural

activities, where similar categories of stimuli are connected to each other in a nested structure. It is

worth noting that these similarities are directly generated based on the neural activities without any

supervised information. Thus, there are suitable to estimate how much the neural pattern in different

categories of stimuli are linearly independent (or dependent) to each other. In Chapter 4, we will

present a novel supervised approach that is called Deep Representational Similarity Analysis (DRSA)

for analyzing the similarity of the neural activities. Indeed, DRSA not only uses the brain patterns

to apply the similarity analysis but also it employs the supervised information in the design matrix to

detect within- or between- class stimuli.

3.8 Conclusion

There is a wide range of challenges for fMRI analysis. In this section, we discuss some of them,

i.e., decreasing noise and sparsity, defining effective regions of interest (ROIs), visualizing results,

and the cost of brain studies. In overcoming these challenges, this section proposes Multi-Region
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Neural Representation as a novel feature space for decoding different stimuli in the human brain. The

proposed method is applied in three stages: firstly, snapshots of brain image (each snapshot repre-

sents neural activities for a unique stimulus) are selected by finding local maximums in the smoothed

version of the designmatrix. Then, features are generated in three steps, including normalizing to stan-

dard space, segmenting the snapshots in the form of automatically detected anatomical regions, and

removing noise by Gaussian smoothing in the level of the detected regions. Finally, we propose two

learning approaches. Indeed, extracted features can be analyzed by using both unsupervised learning

and supervised learning. This thesis proposed a cluster ensemble approach in order to apply unsu-

pervised learning, where similarities or distances between neural activities can be compared across

subjects. As the supervised alternative, we develop an ensemble classification (i.e., bagging tech-

nique) on binary ℓ1-regularized SVM classifiers, where they are created by employing each of neural

activities in the level of ROIs, i.e., each snapshot represents neural activities for a unique stimulus.

Experimental studies show the superiority of our proposed method in comparison with state-of-the-art

methods. In addition, the time complexity of the proposed method is naturally lower than the classical

methods because it employs a snapshot of brain image for each stimulus rather than using the whole

of time series.
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Chapter 4. Deep Representational Similarity Analysis

As one of the fundamental approaches in fMRI analysis, Representational Similarity Analysis

(RSA) [7, 27, 28] is a supervised approach that evaluates the similarities (or distances) between dis-

tractive cognitive tasks. In practice, RSA can be mathematically formulated as a multi-set (group)

regression problem, i.e., a linear model for mapping between the matrix of neural activities and the

design matrix [34]. Original RSA employs basic linear approaches, such as Ordinary Least Squares

(OLS) [7] or General Linear Model (GLM) [28]. Indeed, these methods cannot provide acceptable

performances on real-world datasets, e.g., datasets with broad Region of Interest (ROI) or whole-brain

fMRI data [3, 13, 104, 105]. On the one hand, the number of voxels in most of fMRI datasets are

more than time points. Thus, the matrix of neural activities may not be full rank [13]. On the other

hand, the mentioned methods must calculate the inverse of the covariance matrix of the neural activ-

ities for solving the RSA problems [19]. This inverse may reduce the stability of the results when the

covariance matrix includes low Signal-to-Noise Ratio (SNR) [3].

As the first group of modern approaches, some of the new RSA methods utilize the Bayesian

technique [3, 29]. As one of these algorithms, Bayesian RSA (BRSA) [3] considers the covariance

matrix as a hyper-parameter generative model and then calculates this matrix from neural activities.

Although Bayesian methods can significantly improve the SNR issue and even handle some nonlinear

datasets, they are limited to a restricted transformation function (Gaussian distributions of the hyper-

parameters). As another problem in the classical approaches, OLS and GLM also do not use the

regularization term to avoid the overfitting. The second group of modern approaches focused on

the regularization issue. While Ridge Regression method [30] utilizes an additional norm ℓ2 for

solving the mentioned issue, Least Absolute Shrinkage and Selection Operator (LASSO) method

[31] employs norm ℓ1 to regularize the regression problem. As another alternative, the Elastic Net

method [32] made a trade-off between ℓ1 and ℓ2 norms. Moreover, other techniques developed novel

regularization terms, such as Octagonal Shrinkage andClusteringAlgorithm for Regression (OSCAR)

[33] or OrderedWeighted ℓ1 (OWL) [34, 35]. As the primary problem, these methods always consider

that the relations between features are linear.
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4.1 Representational Similarity Analysis (RSA)

fMRI time series collected from ℓ-th subject can be denoted by X(ℓ) =
{
xij

}
∈ RT×Vorg , 1 ≤

i ≤ T, 1 ≤ j ≤ Vorg, where T is the number of time points, and Vorg denotes the number of voxels

in the original space. This thesis assumes that the neural activities of each subject are column-wise

standardized, i.e., X(ℓ) ∼ N (0, 1). We can also consider this condition as a preprocessing step if the

original data is not standardized. Indeed, RSAmethod is looking for the following objective function:

min
B(ℓ)

∥∥∥X(ℓ) − D(ℓ)B(ℓ)
∥∥∥2
F
+ r(B(ℓ)), (4.1)

where D(ℓ) =
{
dik

}
∈ RT×P , dik ∈ R, 1 ≤ i ≤ T, 1 ≤ k ≤ P is the design matrix, B(ℓ) =

{
βkj

}
∈

RP×Vorg , βkj ∈ R, 1 ≤ k ≤ P, 1 ≤ j ≤ Vorg denotes the matrix of estimated regressors, and r(B(ℓ))

is the regularization term for ℓ-th subject. Here, P denotes the number of distinctive categories of

stimuli, and d(ℓ).k ∈ RT , 1 ≤ k ≤ P as the k-th column of the design matrix is the convolution of the

onsets of k-th category (o(ℓ).k ∈ RT ) with Ξ as the Hemodynamic Response Function (HRF) signal,

i.e., d(ℓ).k = o(ℓ).k ∗ Ξ [3, 19].

In (4.1), the regularization term is zero (r(B) = 0) for non-regularized methods, including OLS,

GLM, and BRSA. The term r(B) is α
∥∥B∥∥2

F
for Ridge Regression, α

∥∥B∥∥
1,2

for LASSO method,

αρ
∥∥B∥∥

1,2
+0.5α(1−ρ)

∥∥B∥∥2
F
for Elastic Net method. Here, we have α > 0, 0 < ρ < 1, and

∥∥B∥∥
1,2

=∑P
k=1

∥∥βk.∥∥2. In addition, OWL utilizes r(B) =
∑P

k=1 λk

∥∥β[k].∥∥2, where the rows of matrix B is

sorted from greatest ℓ2 norm to the smallest one, and λk is non-negative and non-increasing weights.

In some sense, the OWL regularization term is a generalized version of the OSCAR regularization,

i.e. λk is weights with linear decay [34].

In order to generalize RSA for multi-subject fMRI datasets, we calculate the mean of the regres-

sors matrices across subjects:

B∗ =
1

S

S∑
ℓ=1

B(ℓ), (4.2)

where S denotes the number of subjects, and each row ofB∗ ∈ RP×Vorg =
{
β∗1., . . . , β∗P.

}
, β∗k. ∈ RVorg

illustrates the extracted neural signature belong to k-th category of cognitive tasks.

Three metrics will be used to evaluate the performance of RSA methods. As the first metric, we

calculate the mean of square error for analyzing the accuracy of regression:

MSE =
1

TSV

S∑
ℓ=1

T∑
i=1

V∑
j=1

(
x
(ℓ)
ij −

P∑
k=1

d
(ℓ)
ik β

(ℓ)
kj

)2
. (4.3)
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Figure 4.1 Deep Representational Similarity Analysis (DRSA) approach

The next two techniques evaluate between-class correlation and between-class covariance of the re-

gressors matrices:

CR =
1

S

S∑
ℓ=1

max
1≤i≤P,
i<j≤P

{
Corr(β(ℓ)i. , β

(ℓ)
j. )

}
, (4.4)

CV =
1

S

S∑
ℓ=1

max
1≤i≤P,
i<j≤P

{
Cov(β(ℓ)i. , β

(ℓ)
j. )

}
, (4.5)

where β(ℓ)i. , β
(ℓ)
j. ∈ B(ℓ), function Corr is the Pearson correlation, and function Cov calculates the

covariance between two vectors. All of these three metrics must be minimized for an ideal solution

[3, 34, 105].

4.2 Deep Representational Similarity Analysis (DRSA)

As Figure 4.1 depicted, DRSA maps nonlinear neural activities to a linear embedded space by

using a transformation function, i.e. x ∈ RVorg → f(x) ∈ RV , where V ≤ Vorg denotes the number

of mapped features in the linear embedded space. Although f can be any restricted fixed transforma-

tion function (such as Gaussian or Polynomial), this thesis uses multiple stacked layers of nonlinear

transformation function as follows:

f
(
x; θ
)
=WChC−1 + bC ,

hm = g(Wmhm−1 + bm) for 2 ≤ m < C,
(4.6)
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where h1 = x, C ≥ 3 is the number of deep network layers, θ =
{
Wm,bm for 2 ≤ m ≤ C

}
denotes all network parameters, and g is a nonlinear function applied componentwise, i.e., Rectified

Linear Unit (ReLU), sigmoid, or tanh [13]. By considering U (m), 2 ≤ m < C as the number of units

inm-th intermediate layer, the parameters of the output layer are denoted byWC ∈ RV×U(C−1) , bC ∈

RV . For 2 ≤ m < C, the parameters of intermediate layer are defined byWm ∈ RU(m)×U(m−1) , bm ∈

RU(m) except W2 ∈ RU(2)×Vorg . By using the proposed transformation function, DRSA objective

function can be denoted as follows:

min
B(ℓ),θ(ℓ)

(
q
(
X(ℓ),D(ℓ),B(ℓ), θ(ℓ),Ψ(j)

)
+ r
(
B(ℓ)
))

, (4.7)

where Ψ(j) is a set of randomly selected time points related to j-th iteration and the size of this set

(|Ψ(j)| < T ) is equal to the batch size. The main term of DRSA method is defined as follows:

q
(
X,D,B, θ,Ψ(j)

)
=
∑
i∈Ψ(j)

∥∥∥f(xi.; θ)− di.B∥∥∥2
2
, (4.8)

where xi. ∈ R1×V denotes all voxels belong to i-th time point (row) of the neural activities X, and

di. ∈ R1×P is the i-th row of the design matrix D. Unlike other applications of deep transformation

function [13, 41, 42], we consider a fixed structure of deep network layers for all subjects, including

f(x(ℓ), θ(ℓ)) rather than fℓ(x(ℓ), θ(ℓ)). This notation can improve the stability of generated results and

also decrease the number of parameters that must be estimated for each RSA problem. Thus, we just

need to estimate additional network parameters (θ(ℓ), 1 ≤ ℓ ≤ S) for each problem in comparison

with the classical RSA approaches. Further, DRSA regularization term is defined as follows, where

α ≥ 1 is the scaling factor that must be defined based on data normalization:

r
(
B
)
=

V∑
j=1

P∑
k=1

α
∣∣∣βkj

∣∣∣+ 10α
(
βkj

)2
. (4.9)

Here, we propose an optimization approach for DRSA problem. This method seeks an optimum

solution for (4.7) by using two different steps, which iteratively work in unison. By considering fixed

network parameters (θ(ℓ)), RSA objective function (JR) is firstly optimized as follows by using the

j-th mini-batch (Ψ(j)) of neural activities:

min
B(ℓ)

(
J
(ℓ)
R = q

(
X(ℓ),D(ℓ),B(ℓ), θ(ℓ),Ψ(j)

)
+ r
(
B(ℓ)
))

. (4.10)
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Lemma 4.1. For minimizing JR, we have:

∇B

(
JR

)
= α sign

(
B
)
+ 20αB− 2

∑
i∈Ψ(j)

d⊤i.
(
f
(
xi.; θ

)
− di.B

)
(4.11)

where sign
(
B
)
∈
{
− 1,+1

}P×V is the sign function.

Proof.

∇B

(
JR

)
=

∂

∂B
q
(
X,D,B, θ,Ψ(j)

)
+

∂

∂B
r
(
B
)

So, we have:

∂

∂B
q
(
X,D,B, θ,Ψ(j)

)
=
∑
i∈Ψ(j)

∂

∂B

∥∥∥f(xi.; θ)− di.B∥∥∥2
2
=

2
∑
i∈Ψ(j)

∂

∂B

(
f
(
xi.; θ

)
− di.B

)⊤(
f
(
xi.; θ

)
− di.B

)
=

2
∑
i∈Ψ(j)

(
∂

∂B
f
(
xi.; θ

)
− ∂

∂B
di.B

)⊤(
f
(
xi.; θ

)
− di.B

)
,

where ∂
∂Bf
(
xi.; θ

)
= 0 and ∂

∂Bdi.B = di., so we have:

∂

∂B
q
(
X,D,B, θ,Ψ(j)

)
= −2

∑
i∈Ψ(j)

d⊤i.

(
f
(
xi.; θ

)
− di.B

)

As the next term, we have to calculate the derivation of the regularization function:

∂

∂B
r
(
B
)
= α

V∑
j=1

P∑
k=1

∂

∂B

∣∣∣βkj

∣∣∣+ 10α
V∑
j=1

P∑
k=1

∂

∂B
β2
kj

By considering the following term:

∂

∂
(
B
)
iℓ

∣∣βkj

∣∣ =


∣∣βkj

∣∣/βkj = sign(βkj) k=i, j=ℓ

0 otherwise
,

where we assume sign(0) = 1 and have:

V∑
j=1

P∑
k=1

∂

∂B

∣∣∣βkj

∣∣∣ = sign
(
B
)
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Further, we can also define following term:

∂

∂
(
B
)
iℓ

β2
kj =

2βkj k=i, j=ℓ

0 otherwise
,

so we have:
V∑
j=1

P∑
k=1

∂

∂B
β2
kj = 2B.

Further, the derivation of the regularization function is

∂

∂B
r
(
B
)
= α sign

(
B
)
+ 20αB.

Thus, the whole of procedure results:

∇B

(
JR

)
=

∂

∂B
q
(
X,D,B, θ,Ψ(j)

)
+

∂

∂B
r
(
B
)
=

α sign
(
B
)
+ 20αB− 2

∑
i∈Ψ(j)

d⊤i.
(
f
(
xi.; θ

)
− di.B

)

As the next step, back-propagation algorithm [56] is applied to the kernel objective function (JK)

in order to update the network parameters in the j-th iteration:

min
θ(ℓ)

(
J
(ℓ)
K = q

(
X(ℓ),D(ℓ),B(ℓ), θ(ℓ),Ψ(j)

))
, (4.12)

where we consider the regressors matrix (B(ℓ)) is fixed in this step.

Lemma 4.2. The network parameters (θ) can be updated by considering the vector di.B as the ground

truth of f
(
xi.; θ

)
and then using back-propagation algorithm to update the parameters.

Proof. Since f
(
xi.; θ

)
is a standard multilayer perceptron (MLP), we can update the network param-

eters by using ∇θ

(
f
(
xi.; θ

))
, where the output of the optimized deep neural network has the lowest

error in comparison with the vector di.B (as the ground truth). By reducing this error, JK will be

also minimized. Please refer [56] for technical information related to MLP and back-propagation

algorithm.
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Algorithm 4.8 Deep RSA for ℓ− th subject
Input: DataX(ℓ), DesignD(ℓ), Number of layersC, Number of unitsU (m) form = 2:C, Learning rate

η (default 10−3), Maximum IterationM (default 1000), Batch SizeN (default 50), Scaling parameter

α (default 10), Adam optimization parameters µ1 = 0.9, µ2 = 0.999, ϵ = 10−8 [106].

Output: Regressors matrix B(ℓ), and Parameters θ(ℓ)

Method:

01. Initialize θ(ℓ) ∼ N (0, 1), B(ℓ) ∼ N (0, 1).

02. δ0 ← 0 (Initialize 1st moment vector)

02. γ0 ← 0 (Initialize 2nd moment vector)

03. FOR j = 1:M

04. Create Ψ(j) by selecting N samples from 1 to T .

05. ϕ̂j =
∑

i∈Ψ(j)∇B(ℓ)

(
J
(ℓ)
R

)
.

06. Update B(ℓ) ← B(ℓ) − ηϕ̂j .

07. ϕj =
∑

i∈Ψ(j)∇θ(ℓ)

(
f
(
x(ℓ)i. ; θ(ℓ)

))
.

08. δj ← µ1δj−1 + (1− µ1)ϕj .

09. γj ← µ2γj−1 + (1− µ2)ϕ
2
j .

10. δ̃j ← δj/(1− µj
1).

11. γ̃j ← γj/(1− µj
2).

12. Update θ(ℓ) ← θ(ℓ) − ηδ̃j

/
(
√

γ̃j − ϵ).

13. END FOR.

Algorithm (4.8) illustrates the whole of the optimization procedure. As the first step, the network

parameters are considered fixed, and then Stochastic Gradient Descent (SGD) [13, 42, 107] updates

the regressors matrix B(ℓ) belong to ℓ-th subject. As the second step, the regressors matrix is assumed

fixed, and then the Adam [106] approach updates the deep network parameters. In order to generalize

DRSA for the multi-subject problem, we also employ (4.2) for calculating the mean of the regressors

matrices across subjects.

In summary, this section develops DRSA as a flexible deep approach for improving the per-

formance of representational similarity analysis (RSA) method in fMRI analysis. For seeking an

efficient analysis, DRSA uses a deep network (multiple stacked layers of nonlinear transformation)

for mapping neural activities of each subject into an embedded space (f : RVorg → RV ). Unlike the
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Table 4.1 Mean of square error (MSE) across subject, standard deviation of MSE for all methods is lower than

10−2 Datasets RSA LASSO Elastic Net OWL BRSA GRSA DRSA

R105 0.984 0.874 0.864 0.812 0.785 0.701 0.452

R107 0.971 0.868 0.831 0.789 0.832 0.752 0.632

R232 0.999 1.000 0.990 0.895 0.764 0.652 0.435

W001 0.985 0.953 0.965 0.916 0.893 0.831 0.691

W002D 0.953 0.632 0.722 0.483 0.677 0.538 0.156

W002P 0.948 0.732 0.738 0.708 0.509 0.235 0.137

W005 0.989 0.899 0.864 0.831 0.863 0.746 0.372

W011D 0.973 0.921 0.902 0.874 0.821 0.802 0.582

W011W 0.968 0.898 0.834 0.784 0.800 0.712 0.699

W017 0.988 0.602 0.681 0.737 0.599 0.430 0.288

W052R 0.996 0.915 0.745 0.482 0.721 0.143 0.066

W052W 0.997 0.810 0.777 0.503 0.671 0.204 0.050

W102 0.989 0.771 0.691 0.231 0.372 0.389 0.160

W105 0.991 0.914 0.876 0.843 0.798 0.734 0.324

W107 0.973 0.972 0.952 0.900 0.892 0.712 0.468

W116A 0.990 0.918 0.943 0.897 0.851 0.832 0.783

W116V 0.988 0.950 0.942 0.895 0.893 0.800 0.431

W164 0.970 0.688 0.614 0.532 0.395 0.375 0.286

W231 0.986 0.853 0.832 0.773 0.731 0.733 0.594

W232 0.381 0.345 0.340 0.302 0.289 0.277 0.195

previous nonlinear methods that used a restricted fixed transformation function, mapping functions

in DRSA are flexible across subjects because they employ multi-layer neural networks, which can

implement any nonlinear function [13, 41, 42]. Therefore, DRSA does not suffer from disadvantages

of the previous nonlinear approach. Finally, DRSA can handle a large number of subjects by using

the proposed optimization algorithm, including gradient-based optimization approaches.

4.3 Experiments

The empirical studies are presented in this section. For generating the experiments, we employ

the original RSA by using GLMmethod as a baseline. Further, we report the performance of LASSO
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Table 4.2 Maximum of between-class covariance (CV ) across subjects (max±std)

Datasets RSA LASSO Elastic Net OWL BRSA GRSA DRSA

R105 2.732±0.123 0.523±0.139 0.532±0.140 0.426±0.076 0.598±0.132 0.276±0.082 0.140±0.018

R107 1.629±0.113 0.357±0.078 0.355±0.078 0.242±0.082 0.289±0.072 0.173±0.081 0.096±0.011

R232 0.030±0.003 0.027±0.001 0.026±0.001 0.024±0.012 0.030±0.023 0.028±0.032 0.026±0.023

W001 3.831±1.042 0.245±0.104 0.249±0.105 0.091±0.072 0.062±0.020 0.092±0.032 0.013±0.010

W002D 2.124±0.042 0.889±0.053 0.801±0.081 0.751±0.023 0.843±0.017 0.563±0.099 0.102±0.002

W002P 2.941±0.014 0.937±0.021 0.838±0.012 0.800±0.067 0.261±0.043 0.489±0.055 0.090±0.009

W005 0.262±0.018 0.226±0.013 0.240±0.027 0.200±0.029 0.182±0.052 0.107±0.028 0.087±0.003

W011D 0.471±0.073 0.162±0.027 0.162±0.023 0.142±0.062 0.152±0.023 0.051±0.043 0.019±0.032

W011W 0.766±0.124 0.255±0.023 0.258±0.031 0.232±0.043 0.127±0.012 0.102±0.021 0.027±0.013

W017 0.493±0.031 0.194±0.077 0.237±0.093 0.179±0.071 0.351±0.041 0.230±0.071 0.053±0.010

W052R 1.334±0.092 0.377±0.094 0.357±0.011 0.246±0.031 0.144±0.006 0.199±0.020 0.001±0.001

W052W 1.774±0.087 0.419±0.026 0.396±0.072 0.305±0.041 0.302±0.061 0.108±0.026 0.011±0.007

W102 2.111±0.048 0.235±0.000 0.200±0.004 0.208±0.023 0.193±0.054 0.242±0.054 0.019±0.002

W105 4.788±0.592 0.216±0.093 0.217±0.032 0.159±0.011 0.195±0.032 0.099±0.096 0.025±0.046

W107 1.839±0.125 0.362±0.049 0.331±0.044 0.172±0.021 0.232±0.074 0.251±0.051 0.042±0.006

W116A 0.505±0.106 0.147±0.003 0.143±0.020 0.120±0.039 0.059±0.001 0.102±0.048 0.018±0.000

W116V 2.224±0.864 0.021±0.012 0.021±0.005 0.021±0.003 0.054±0.002 0.020±0.010 0.019±0.011

W164 8.890±0.087 0.174±0.004 0.169±0.031 0.108±0.009 0.289±0.072 0.100±0.006 0.037±0.004

W231 0.438±0.072 0.325±0.052 0.325±0.023 0.300±0.037 0.126±0.045 0.272±0.076 0.014±0.013

W232 0.016±0.003 0.014±0.020 0.010±0.007 0.023±0.002 0.038±0.021 0.034±0.025 0.030±0.020

algorithm [31], where parameter α = 0.9 generates the best results. As another regularized method,

Elastic Net is also used for evaluating the proposed method. In this method, the best results are

achieved by α = 1.0 and ρ = 0.5. As the last method with regularization term, the performance of

OWL is also presented. To generate the results, Spikeweight sequence is employed for OWLmethod,

as the best approach in the original paper [34]. As one of the Bayesian approaches, the performance

of Bayesian RSA (BRSA) is also analyzed. All parameters in this method are assigned optimum

based on the original paper [3]. Moreover, the number of iterations for all of the mentioned methods

is considered 2000. This thesis reports the performance of the proposed method with two different

transformation function, including linear, and deep. As the linear approach, Gradient RSA (GRSA)

utilizes the objective function (4.7) and optimization Algorithm (4.8), but the transformation function

is considered linear, i.e., f
(
x
)
= x. The aim of reporting GRSA is illustrating howmuch the proposed
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Table 4.3 Maximum of between-class correlation (CR) across subjects (max±std)

Datasets RSA LASSO Elastic Net OWL BRSA GRSA DRSA

R105 1.147±0.042 0.751±0.242 0.731±0.212 0.821±0.120 0.389±0.010 0.451±0.081 0.372±0.016

R107 0.922±0.053 0.715±0.147 0.718±0.148 0.531±0.123 0.458±0.076 0.142±0.092 0.135±0.000

R232 1.027±0.033 0.900±0.026 0.876±0.210 0.631±0.193 0.871±0.100 0.555±0.112 0.496±0.093

W001 0.767±0.119 0.289±0.126 0.292±0.147 0.302±0.021 0.584±0.043 0.324±0.041 0.307±0.010

W002D 2.124±0.045 0.389±0.071 0.411±0.054 0.289±0.025 0.319±0.011 0.432±0.025 0.102±0.005

W002P 2.941±0.011 0.481±0.067 0.481±0.032 0.361±0.004 0.500±0.000 0.099±0.006 0.090±0.012

W005 0.891±0.035 0.823±0.036 0.739±0.036 0.699±0.076 0.519±0.045 0.361±0.021 0.139±0.019

W011D 0.887±0.093 0.690±0.131 0.621±0.092 0.588±0.010 0.610±0.037 0.593±0.027 0.165±0.076

W011W 0.827±0.032 0.607±0.058 0.507±0.021 0.436±0.071 0.591±0.068 0.367±0.100 0.253±0.051

W017 0.493±0.062 0.365±0.032 0.341±0.026 0.420±0.008 0.075±0.003 0.105±0.041 0.053±0.019

W052R 1.334±0.039 0.377±0.069 0.384±0.021 0.209±0.037 0.106±0.052 0.231±0.075 0.015±0.000

W052W 1.774±0.099 0.692±0.041 0.471±0.052 0.296±0.019 0.111±0.003 0.182±0.041 0.011±0.001

W102 2.117±0.072 0.355±0.088 0.404±0.051 0.352±0.006 0.080±0.009 0.266±0.061 0.019±0.005

W105 1.158±0.074 0.696±0.119 0.621±0.099 0.569±0.073 0.724±0.069 0.639±0.031 0.461±0.112

W107 0.917±0.031 0.652±0.074 0.520±0.008 0.366±0.029 0.444±0.091 0.359±0.055 0.160±0.021

W116A 0.951±0.045 0.851±0.077 0.799±0.038 0.572±0.155 0.383±0.051 0.451±0.012 0.270±0.039

W116V 0.637±0.105 0.472±0.163 0.459±0.191 0.327±0.076 0.231±0.021 0.132±0.021 0.328±0.011

W164 8.890±0.108 0.241±0.057 0.228±0.081 0.342±0.002 0.176±0.021 0.174±0.004 0.037±0.002

W231 0.888±0.113 0.761±0.114 0.700±0.172 0.421±0.273 0.521±0.082 0.231±0.063 0.126±0.002

W232 1.024±0.046 0.902±0.028 0.893 ±0.021 0.711±0.121 0.421±0.121 0.621±0.094 0.235±0.016

method can improve the performance of RSA analysis without deep transformation. Finally, we have

presented the performance of DRSA. We generate results in both GRSA and DRSA by using differ-

ent values of α = [1, 5, 10, 20, 50, 100]. In all datasets with normalization X(ℓ) ∼ N (0, 1), α = 10

has generated better trade-off between covariance and correlation in comparison with other values.

Moreover, we evaluate the performance of DRSA by employing different nonlinear activation func-

tions, including ReLU, sigmoid, tanh. In most of the normalized datasets, the proposed method by

using sigmoid activation function has generated better performance. In GRSA and DRSA, the number

of iterations is considered 1000, the batch size is assigned 50, learning rates is 10−3 for normalized

datasets, and the Adam optimization parameters are set optimum based on the original paper [106],

including µ1 = 0.9, µ2 = 0.999, and ϵ = 10−8. In this section, all algorithms are implemented by
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(a) R105 (b) R107 (c) R232

Figure 4.2 Runtime Analysis

Python 3 on a PC with certain specifications1 by authors for generating the experimental results.

4.3.1 Performance analysis

Table 4.1 shows the benchmarking of different RSA algorithms by using mean of square error

(MSE), i.e., metric (4.3). In this table, the standard deviation of all RSA methods is lower than 10−2.

Table 4.2 has also analyzed the maximum of between-class covariance by using (4.5). Further, Table

4.3 has evaluated the maximum of between-class correlation by utilizing (4.4). In this section, we

have employed two hidden layers for DRSA, i.e., C = 4. Here, we present the number of units for the

hidden layers and the output layer as follows, [HL1, HL2, OUT ]. As an example, [1000, 700, 500]

represents U (1) = 1000 as the number of the first hidden layer, U (2) = 700 as the number of the

second hidden layer and V = 500 as the output layer. The best results for R107 are achieved by

[400, 200, 100]. While we can use any format for the structure of the deep network, the rest of DRSA

experiments are generated by using [1000, 700, 500] setting. In practice, this structure can provide

an efficient trade-off between runtime and performance for DRSA method. As depicted in the result

tables, DRSA has generated better performance in comparison with other methods because it firstly

provides better feature representation in the linear embedded space and then effectively estimates the

similarities between different cognitive tasks (please also compare the performance of GRSA with

other RSA methods).

1CPU = Xeon E5-2630, RAM = 64GB, GPU = GeForce TITAN X, OS = KDE Neon 16.04.3, CUDA = 9.0, CuDNN = 7.0.5,

Python = 3.6.5, Pip = 9.0.3, Numpy = 1.14.2, Scipy = 1.0.1, Scikit-Learn = 0.19.1, Tensorflow = 1.7.0.
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Figure 4.3 Comparing correlation of raw and deep features by using R105

4.3.2 Runtime analysis

This section analyzes the runtime of the proposed method and other RSAmethods by employing

ROI-based datasets. As mentioned before, all results in this section are generated by using a PC with

certain specifications. Further, the runtime of DRSA is evaluated by using both hardware, i.e., CPU

(DRSA) and GPU (DRSAg). Figure 4.2 demonstrates the runtime of the mentioned methods, where

runtime of other algorithms are scaled based on DRSA. In other words, the runtime of the proposed

method is considered as a unit. As illustrated in this figure, BRSA generated the worse runtime

because it must estimate a wide range of hyper-parameters for high-dimensional datasets. Further,

the runtime of DRSA is similar to the regularized methods (LASSO, Elastic Net, OWL), while those

algorithms did not utilize any transformation function. Since GRSA (same as DRSA) employs a

min-batch of time-points, it produces better runtime in comparison with the regularized methods.

By considering the performance of the proposed method in the previous section, DRSA generates

acceptable runtime. As mentioned before, the proposed method utilizes gradient-based approaches

that can rapidly reduce the time complexity of the optimization procedure. It is worth noting that

runtime of whole-brain datasets has the same tendency.
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Figure 4.4 Supervised similarity analysis

4.3.3 Visualizing Supervised Similarity

In this section, we show why DRSA can provide better similarity analysis in comparison with

other linear methods. Based on R105 data, Figure 4.3 illustrates the correlation matrices in both

the original space and the embedded space that is generated by using the deep kernel. As this figure

depicted, the cell located in i-th row and j-th column shows howmuch their corresponding categories

of stimuli are dependent on each other. As mentioned before, the deep kernel in DRSA maps the

neural activities to an embedded space, where the similarity analysis can be applied by using a linear

clustering (model) approach. Further, this figure demonstrates that the extracted features are linearly

independent in the embedded space. Indeed, we have reported the maximum value of these cells

in Table 4.3 and Table 4.2 across each of RSA techniques. Here, smaller correlation /or covariance

values represent better similarity analysis. Moreover, we can show how much the neural signature in

the embedded space is information-rich. Figure 4.4 visualizes the supervised similarity of the region-

based datasets by using the generated Β∗ matrix in the DRSA method. As this figure illustrated,

DRSA can generate different nested similarity analysis in comparisonwithWSCE by using supervised

information.
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Figure 4.5 Representing neural activities of selected snapshots in data R105

4.3.4 Representing Neural Activities

In this section, we visualize some samples of neural activities based on Β∗ matrix that is gen-

erated for datasets R105, and R107. As Figure 4.5 shows the generated neural signatures. Here, we

demonstrate the left side of the brain for R107 because there is no ROI region on the right side for

this dataset [108]. Like the previous chapter, while some of the neural activities are significantly

distinctive across categories of stimuli, the rest of them are highly correlated.

4.3.5 Whole-brain data analysis

One advantage of using whole-brain data is comparing different datasets. Previously, the main

challenge for analyzing these data was the number of dimensions, i.e., the raw-voxels are noisy and
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Figure 4.6 Comparing the similarities (or differences) across whole-brain datasets

sparse [3]. As the previous sections demonstrate, the classical methods cannot provide stable per-

formance for analyzing whole-brain data. The proposed method can improve both the performance

and runtime of whole-brain analysis by mapping the neural activities to an embedded linear space.

As mentioned before, the number of original voxels in all of the whole-brain data is Vorg = 19742.

In the previous section, the deep transformation function maps these voxels to a linear embedded

space with V = 500 dimensions by utilizing a network with [1000, 700, 500] structure. We believe

that not only can this transformation function significantly reduce the noise and sparsity but also the

extracted neural signatures are information-rich. Thus, we compare the distance of these signatures

across datasets. Figure 4.6 shows this comparison, where (for each pair of datasets) the distances be-

tween different categories of the first dataset are compared with all categories of the second datasets,

i.e.,
∑P1

i=1

∑P2

j=1

∥∥∥β(∗,1)
i. − β

(∗,2)
j.

∥∥∥2
2
, β(∗,k)

i. ∈ B(∗,k). Here, the regressors matrix B(∗,k) is related to

k-th datasets and calculated by using (4.2). As Figure 4.6 shows, the datasets related to each type of

cognitive tasks (visual stimuli, decision making, and flavor) have more within-category similarity.
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4.4 Conclusion

This section extended a deep approach for Representational Similarity Analysis (RSA) methods

in order to provide accurate similarity (or distance) analysis in multi-subject fMRI data. Deep Repre-

sentational Similarity Analysis (DRSA) can handle fMRI datasets with noise, sparsity, nonlinearity,

high-dimensionality (broad ROI or whole-brain data), and a large number of subjects. DRSA utilizes

gradient-based optimization approaches and generates an efficient runtime on large datasets. Further,

DRSA is not limited by a restricted fixed representational space because the transformation function

in DRSA is a multi-layer neural network, which can separately implement any nonlinear function for

each subject to transfer the neural activities to an embedded linear space. To evaluate the performance

of the proposed method, multi-subject fMRI datasets with various tasks–including visual stimuli, de-

cision making, flavor, and working memory–are employed for running the empirical studies. And,

the results confirm that DRSA achieves superior performance to other state-of-the-art RSA algorithms

for evaluating the similarities between distinctive cognitive tasks.
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Chapter 5. Imbalance Multi-Voxel Pattern Analysis

In order to decode neural activities in the human brain, Multi-Voxel Pattern Analysis (MVPA)

technique [19, 20, 85] must apply machine learning methods to task-based functional Magnetic Reso-

nance Imaging (fMRI) datasets. In this section, we develop a modified version of imbalance Adapting

Boosting (AdaBoost) algorithm for binary classification. This algorithm uses a supervised random

sampling and penalty values, which are calculated by the correlation between different classes, for

improving the performance of prediction. This binary classification will be used in a one-versus-all

Error-CorrectingOutput Codes (ECOC)method as amulticlass approach for classifying the categories

of the brain response.

5.1 Imbalance AdaBoost Binary Classification (IABC)

In previous sections, we mentioned the imbalance issue in the MVPA analysis. In practice,

there are two approaches in order to deal with this issue, i.e. designing an imbalance classifier, or

converting the imbalance problem to an ensemble of balance classification models. Previous studies

demonstrated that the performance of imbalance classifiers may not be stable, especially when we

have sparsity and noise in our datasets [19, 20, 109]. Since fMRI datasets mostly include noise and

sparsity, this paper has chosen the ensemble approach. Technically, ensemble learning also contains

two groups of solutions, i.e. bagging or boosting. While bagging (such as our method in Chapter 3)

generates all classifiers at the same time and then combine all of them as the final model, the boosting

gradually creates each classifier in order to improve the performance of each iteration by tracing errors

of previous iterations. We just have to note that ensemble learning can be used in both balance and

imbalance problems. In fact, the main difference comes from the strategy of sampling. In balance

problems, sampling methods are applied to the whole of datasets, whereas instances of the large class

are sampled in the imbalance problems [109]. As depicted in Figure 5.1, this paper presents a new

branch of AdaBoost algorithm, which is called Imbalance AdaBoost Binary Classification (IABC),

in order to significantly improve the performance of the final model in fMRI analysis. In a nutshell,

this algorithm firstly converts an imbalance MVPA problem to a set of balance problems. Then, it
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Figure 5.1 The proposed AdaBoost algorithm for applying a robust binary classification

iteratively applies the decision tree [109] to each of these balance problems. Finally, AdaBoost is

used in order to generate the final model. In the proposed method, the weight of each classifier (tree)

for the final combination is generated based on the error (failed predictions) of the previous iterations

for gradually improving the performance of the final model.

In order to apply the binary classification, this paper randomly partitions the extracted featuresX

into the training set X̃ and the testing set X̂. As a new branch of AdaBoost algorithm, Algorithm 5.9

employs X̃ for training binary classification. Then, X̂ is utilized for estimating the performance of the

final model. As mentioned before, the binary classification for fMRI analysis is mostly imbalance,

especially by using a one-versus-all strategy. Consequently, the number of samples in one of these

binary classes is smaller than the other classes. As previously mentioned, this paper exploits this

concept in order to solve the imbalance issue. Indeed, Algorithm 1 firstly partitions the training data

X̃ into small X̃S and large X̃L classes (groups) based on the class labels Y(m) ∈
{
+ 1,−1

}
. Here,

all labels are −1 except the label of instances belong to m-th category of visual stimuli. Then, it

calculates the scale J of existed elements between two classes. We have to note that int() defines

the floor function. As the next step, the large class is randomly partitioned into J parts. Indeed, J is

the number of balance subsets generated from the imbalance dataset. Consequently, the number of

the ensemble iteration is J . In each balance subset, training data X̃(n)
Tr is generated by all instances
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Algorithm 5.9 Imbalance AdaBoost Binary Classification (IABC)
Input: Training set X̃, Class labels Y(m).

Output: Set of classifiers Θ(m).

Method:

01. Based on Y(m), partitioning X̃ = {X̃S, X̃L}

02. Calculating J = int( |X̃L|
|X̃S |

).

03. Random sampling: X̃L =
{
X̃(1)

L , X̃(2)
L , . . . , X̃(n)

L , . . . , X̃(J)
L

}
.

04. Initiate X(1)
= Y(1)

= ∅.

05. For (n = 1 . . . J):

06. X̃(n)
Tr =

{
X̃S, X̃(n)

L ,X(n)} as training-set for this iteration.
07. Ỹ(n)

Tr =
{
ỸS, Ỹ(n)

L ,Y(n)} as class labels for this iteration.
08. W(n) =

1 for instances of X̃S or X
(n)

1−
∣∣corr(X̃S, X̃(n)

L

)∣∣ for instances of X̃(n)
L

09. θ(n) = classifier
(
X̃(n)

Tr , Ỹ
(n)
Tr ,W(n)

)
as weighted decision tree.

10 Constructing X(n+1) as instances cannot truly trained in θ(n).

11. ϵ(n) = |X(n+1)|
|X̃(n)

Tr |
as error of classification.

12. α(n) = 1
2
ln
(
1−ϵ(n)

ϵ(n)

)
AdaBoost weight for the classifier θ(n).

13. End For

14. Return Θ(m)
(
x
)
= sign

(∑J+1
n=1 α

(n)θ(n)
(
x
))

as the final model.

of the small class X̃S , one of the partitioned parts of the large class X̃L, and the instances of the

previous iteration X(n), which cannot truly be trained (the failed predictions). After that, training

weights for the final combination (W(n) ∈ [0, 1]) are calculated by using the Pearson correlation

(corr(a, b) = cov(a,b)
σaσb

) between training instances, where larger values increase the learning sensitivity.

Indeed, theseweights are alwaysmaximized for the instances of the small class and the failed instances

of the previous iterations. Further, the weights of the other instances are a scale of the correlation

between the large class and the small class. Therefore, these weights are updated in each iteration

based on the performance of previous iterations. As the last step of each iteration, the proposed

method generates a classification model (θ(n)) and its weight (α(n)) for the final combination. While

classifier() can denote any kind of weighted classification algorithm, this paper employs a simple
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Figure 5.2 The proposed Error-Correcting Output Codes (ECOC) approach for multi-class classification

weighted decision tree [109] as the classification model. At the end, the final model is created by

applying the AdaBoost method to the generated balance classifiers.

5.2 Multi-class IABC Classification Algorithm

In this paper, a multi-class classifier is a prediction model in order to map extracted features

to the category of visual stimuli, i.e. Θ : X̂ → Ypred where Ypred ∈
{
1, 2, . . . , P

}
. Generally,

there are two techniques for applying multi-class classification. The first approach directly creates

the classification model such as multi-class support vector machine [83] or neural network [85]. In

contrast, decomposition design (indirect) uses an array of binary classifiers for solving the multi-class

problems.

Based on the previous discussion related to imbalance issue in fMRI datasets, this paper utilizes

Error-Correcting Output Codes (ECOC) as an indirect multi-class approach in order to extend the
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proposed binary classifier for the multi-class prediction. As depicted in Figure 5.2, ECOC includes

three components, i.e. base algorithms, coding matrix and decoding procedures [110]. Since this

paper uses one-versus-all encoding strategy, Algorithm 5.9 is employed as the based algorithms (Θ(m))

in the ECOC, where it generates a binary classifier for each category of visual stimuli. In other words,

each independent category of the visual stimuli is compared with the rest of categories. Consequently,

the size of the coding matrix is P × P , where i-th diagonal cell of this matrix represents the positive

predictions belong to the i-th category of visual stimuli and the rest of cells in this matrix determine

the other categories of visual stimuli. Indeed, the number of classifiers in this strategy is exactly equal

to the number of categories. As decoding stage, binary predictions, which are generated by applying

the brain response to the base algorithms, are assigned to the category in the codingmatrix with closest

Hamming distance.

In order to present an example for ECOC procedure, consider fMRI dataset with 4 categories

of visual stimuli, i.e. photos of shoes, houses, bottles, and human faces. In this problem, 4 different

binary classifiers must be trained in order to distinguish each category of visual stimuli versus the

rest of them (one-versus-all strategy). A 4 × 4 coding matrix is also generated where each diagonal

element represents the positive class of these categories (classifiers). By considering the order of

the coding matrix, each prediction is assigned to the closest Hamming distance in the coding matrix.

In other words, if these classifiers generate the prediction [+1,−1,−1,−1] for a testing instance,

then this instance definitely belongs to the first category of visual stimuli. Similarly, the prediction

[−1,+1,−1,−1] means the instance belongs to the second category, and etc.

5.3 Experiments

5.3.1 Performance Analysis

In this section, the performance of different methods will be evaluated for both binary and multi-

class analyses. In the binary analysis, the performance of the binary ℓ1-regularized Support Vector

Machine (SVM) is represented. Indeed, this method is used in [24, 83] in order to distinguish different

categories of stimuli from human brain. As the regularized method that is introduced in [24] for

decoding the brain patterns, the performance of the Elastic Net is also reported in this section. The

parameters for Elastic Net is considered optimum based on [24]. As the method was developed in

[93], the performance of a graph-based approach is also reported. Further, the performance of the
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Table 5.1 Accuracy of classification analysis for evaluating different classification techniques (max±std)

Datasets ℓ1-SVM Elastic Net MLP Graph-based IABC

R105 16.72±1.89 17.90±0.21 40.86±0.11 30.27±0.41 39.32±0.45

R107 26.39±2.60 26.75±0.97 37.54±0.56 34.71±0.08 39.02±0.17

R232 30.65±0.79 31.68±0.69 40.40±0.61 36.32±0.31 54.59±0.02

W001 25.47±0.36 24.42±0.14 33.73±0.84 31.02±0.67 36.37±0.59

W002D 61.69±0.86 62.91±0.79 64.42±0.38 64.81±0.32 65.24±0.60

W002P 64.98±0.15 69.55±0.61 72.59±0.80 60.85±0.70 75.85±0.76

W005 32.80±0.93 36.13±0.73 43.09±0.06 37.40±0.94 49.96±0.36

W011D 41.26±0.13 45.80±0.41 65.53±0.52 70.67±0.82 71.78±0.09

W011W 31.37±0.54 35.08±0.68 36.26±0.36 33.71±0.61 38.11±0.42

W017 22.31±0.72 28.20±0.18 40.36±0.49 43.47±0.53 48.19±0.18

W052R 54.83±0.17 57.19±0.52 65.45±0.66 67.02±0.07 69.29±0.53

W052W 53.42±0.99 55.73±0.04 67.88±0.37 64.11±0.22 69.87±0.07

W102 52.33±0.46 51.21±0.51 71.20±0.76 51.39±0.38 75.36±0.42

W105 17.72±0.10 30.18±0.39 34.12±0.41 32.06±0.17 37.72±0.93

W107 32.24±1.61 39.37±0.63 48.83±0.52 50.72±0.05 54.49±0.28

W116A 56.46±0.19 60.11±0.41 64.41±0.90 59.55±0.82 67.93±0.34

W116V 58.03±0.45 63.63±0.75 67.05±0.00 63.24±0.23 70.51±0.59

W164 50.82±0.15 53.24±0.37 63.01±0.26 57.68±0.51 69.80±0.27

W231 27.66±0.92 30.09±0.21 60.48±0.17 64.43±0.07 62.62±0.38

W232 29.97±0.46 24.88±0.88 30.35±0.26 39.71±0.91 30.07±0.07

proposed method is compared with Multilayer Perceptron (MLP) that was introduced [23] in order

to decode the brain patterns. We have used the same network parameters that proposed in [23] as the

optimized solution for MLP networks, i.e., two hidden layers with the same size of units. And, the

number of units in these layers is min(T, V ), where T and V are respectively the numbers of time

points and voxels in the dataset. All of the mentioned algorithms are implemented in Python 3 on

a PC with certain specifications1 by authors in order to generate experimental results. Further, all

evaluations are applied by using leave-one-subject-out cross-validation, except R107 that uses leave-

four-subject-out strategy. As an example, we have selected brain patterns of 5 subjects in R105 for

training a classifier in each iteration and then used the patterns of the rest of the subject in order to test

1DEL , CPU = Intel Xeon E5-2630 v3 (8×2.4 GHz), RAM = 64GB, OS = KDE Neon 16.04.4
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the generated cognitive model. Indeed, not only the brain patterns in training sets and testing sets are

independent across subjects but also fMRI data related to each subject was separately preprocessed

[89]. We have to note that the same training set and testing set are applied in each iteration to all

of the evaluated methods in the whole of this thesis. Table 5.1 shows the empirical studies where

Algorithm 5.9 is directly utilized for binary datasets and our multi-class approach is employed for

datasets with more than two classes. As depicted in this table, the proposed method has achieved the

best performance in comparison with other methods because it provided a better ensemble approach

for analyzing fMRI datasets.

5.3.2 Runtime analysis

This section analyzes the runtime of the proposed method and other classification methods by

employing ROI-based datasets. As mentioned before, all results in this section are generated by using

a PC with certain specifications. Figure 5.3 demonstrates the runtime of the mentioned methods,

where runtime of other algorithms are scaled based on IABC. In other words, the runtime of the

proposed method is considered as a unit. As illustrated in this figure, MLP generated the worse

runtime, specifically when the number of voxels or time points are high such as R232. Since Graph-

based approachmust convert the voxel space to the graph space across subjects, it cannot also generate

acceptable runtime, especially for the datasets with more subjects such as R107. By considering

the performance of the proposed method in the previous section, it generates suitable runtime by

partitioning the huge imbalance samples to a set of small balance instances and then creating the

classification (cognitive) model. It is worth noting that runtime of whole-brain datasets has the same

tendency.

5.4 Conclusions

One of the primary goals in neuroscience is how the neural activities in the human brain can

be mapped to the different cognitive tasks? As an interdisciplinary technique between neuroscience

and computer science, Multivariate Pattern (MVP) algorithms employ task-based fMRI images for

extracting and decoding brain patterns. In practice, MVP analysis can formulate as a classification

problem and predict patterns of neural responses, which are generated by distinctive cognitive tasks.

As the final product of an MVP analysis, decision surfaces are defined to distinguish different stimuli
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in the human brain. Decision surfaces can be used to understand mental diseases. However, im-

proving the performance of prediction is so hard because task-based fMRI datasets can be considered

as the imbalanced classification problems. For instance, consider collected data with ten same size

categories. Since this dataset is imbalance for (one-versus-all) binary classification, most of the clas-

sical algorithms cannot provide acceptable performance. This section proposes IABC framework for

decoding different stimuli in the human brain. This framework uses a new binary imbalance Ad-

aBoost algorithm as binary classification approach. It can increase the performance of prediction by

exploiting a supervised random sampling and the correlation between classes. In addition, this algo-

rithm is utilized in an Error-Correcting Output Codes (ECOC) method for multi-class prediction of

the brain responses. Empirical studies show the superiority of our proposed method in comparison

with state-of-the-art approaches.
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Chapter 6. Conclusion

One of the greatest challenges in our century is understanding how the human brain works. As

an interdisciplinary field of study, computational neuroscience can break neural codes by employing

different concepts from the mathematics, physics, psychology, psychiatry, and machine learning. In

this thesis, we focus on developing modern machine learning approaches for the different levels of

analyzing the neural activities. We first discuss the current challenges for decoding the human brain

and then introduce novel techniques for improving this procedure. These techniques have a wide

range of real-world applications from exploring novel treatments for mental diseases to creating a

new generation of the user interface.

In Chapter 2, we proposed two techniques for functional alignment. Firstly, we develop Deep

Hyperalignment (DHA) as a novel unsupervised approach for functional alignment. DHA is not lim-

ited by a restricted fixed mapping function because the kernel in DHA is a multi-layer neural network

that can separately implement any nonlinear function. As a supervised alternative, Local Discriminant

Hyperalignment (LDHA) method is introduced, where it incorporates the idea of Local Discriminate

Analysis (LDA) into CCA for improving the performance of the hyperalignment solution. In this

chapter, we illustrate that while DHA can improve the performance of binary analysis, LDHA depicts

better performance for multi-class datasets.

In Chapter 3, we propose novel feature analysis techniques. In fact, the proposed approach es-

timates a snapshot of brain image for each stimulus rather than analyzing whole of the time series.

While the classical methods just can extract features from voxel space, the proposed method selects

a subset of time-points for analyzing the neural activities. In practice, these snapshots are selected by

finding local maximums in the smoothed version of the design matrix. Finally, we propose two learn-

ing approaches. Indeed, extracted features can be analyzed by using both unsupervised learning and

supervised learning. This thesis proposed a cluster ensemble approach in order to apply unsupervised

learning, where similarities or distances between neural activities can be compared across subjects.

As the supervised alternative, we develop a bagging technique by using binary ℓ1-regularized SVM

classifiers, where they are generated by utilizing each of neural activities in the level of anatomical
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regions. The main contribution of this method is that it can decrease the sparsity of fMRI datasets.

In Chapter 4, we introduce Deep Representational Similarity Analysis (DRSA) as a novel deep

extension of RSAmethod to analyze similarity for both within a dataset, and across different datasets.

Like DHA, DRSA also employs a deep network as the kernel function that maps nonlinear neural

activities to a linear information-rich embedded space and then evaluates the similarities (or distances)

between themapped features. In addition, DRSAuses a new regularization term formaking a trade-off

between correlation and covariance of distinctive cognitive tasks. Since DRSA uses gradient-based

optimization approaches, it is time efficient for evaluating high-dimensional fMRI images, such as

whole-brain datasets. In the end, we evaluate the similarity of different datasets in this chapter, where

the datasets related to each type of cognitive tasks (visual stimuli, decision making, and flavor) have

more within-category similarity in comparison with distinctive cognitive categories

In Chapter 5, we develop a modified version of imbalance Adapting Boosting (AdaBoost) algo-

rithm for binary classification. This algorithm uses a supervised random sampling and penalty values,

which are calculated by the correlation between different classes, for improving the performance of

prediction. Indeed, this method is well-suited for one-vs-all classification analysis. Then, we focus on

multi-class learning approach. Here, we utilize Error-Correcting Output Codes (ECOC) as an indirect

multi-class approach in order to extend the proposed binary classifiers for the multi-class prediction.

Empirical studies show the superiority of our proposed methods in comparison with state-of-the-art

learning approaches.

Besides the theories and the empirical studies in the thesis, we also make our research easily

reproducible and open to the public. We have created a GUI-based toolbox for running the standard

pipeline of analyzing task-based fMRI images, including the proposed methods in this thesis, that is

available at https://easyfmri.github.io. Moreover, we have also prepared a data repository for

sharing task-based fMRI datasets. This repository is available at https://easyfmridata.github.

io.
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Appendix A. Datasets

In this section, we introduce datasets that are employed in this thesis. Here, we use two group

of datasets, i.e., Region of Interests (ROI) based data, and whole-based datasets. Indeed, we analyze

some parts of brain images in ROI-based data, where these parts are manually selected based on the

original papers of each data. In this thesis, we use ‘R’ prefix for the ROI-based dataset. By contrast,

whole-brain datasets include all of the neural activities in the brains, where the images are registered

to a standard space, i.e., Montreal Neurological Institute (MNI) 152 space T1 with voxel size 4mm

[19]. Further, a ‘W’ prefix is used for denoting whole-brain data. While the ROI-images enable us

to analyze the neural activities in the specific loci, whole-brain data can be used to figure out what

information is represented in a region of the human brain and how that information is encoded. Since

the number of selected features (voxels) in the ROI is significantly smaller than the whole of voxels

in a fMRI image, the runtime of algorithms by utilizing ROI-based datasets are rapidly faster than

whole brain datasets.

Table 1 illustrates the technical information of the employed datasets. In dataset 001, subjects

perform the Balloon Analog Risk-taking Task in an event-related design, where we analyze the whole-

brain neural activities. For more information, please see [111]. In dataset 002, subjects performed

a classification learning task with two different problems, using a ‘weather prediction’ task. In the

probabilistic problem (002P), the labels were probabilistically related to each set of cards. In the de-

terministic problem (002D), the labels were deterministically related to each set of cards. More tech-

nical information can be found in [112]. In data 005, subjects were presented with mixed (gain/loss)

gambles and decided whether they would accept each gamble. No outcomes of these gambles were

presented during scanning, but after the scan, three gamblers were selected at random and played for

real money. Please see [113] for more information. In dataset 011, participants were trained on two

different classification problems. To measure how well participants had learned under each condi-

tion, without feedback task (denoted by 011W) was presented during the probe block, and all items

were presented under single-task conditions. As the next task, subjects learned the categories based

on trial-by-trial feedback. After training, subjects received an additional block of probe trials using a
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Table 1 The datasets.

Title ID Task Type S P T VROI Scan TR TE

Balloon Analog Risk [111] 001 decision 16 4 894 – S 2000 77

Deterministic classification [112] 002D decision 17 2 356 – S 2000 20

Probabilistic classification [112] 002P decision 17 2 356 – S 2000 20

Mixed-gambles [113] 005 decision 16 4 714 – S 2000 30

Dual-task weather prediction [114] 011D decision 14 3 408 – S 2000 25

Weather prediction without feedback [114] 011W decision 14 4 236 – S 2000 25

Selective stop signal task [112] 017 decision 8 6 546 – S 2000 ∼25

Reversal weather prediction [115] 052R decision 13 2 450 – S 2000 20

Weather prediction [115] 052W decision 13 2 450 – S 2000 20

Flanker task [39] 102 decision 26 2 292 – S 2000 20

Visual object recognition [78] 105 visual 6 8 1452 2294 G 2500 30

Word and object processing [108] 107 visual 49 4 322 422 S 2000 28

Auditory odd ball [116] 116A audio 17 2 510 – P 2000 20

Visual odd ball [116] 116V visual 17 2 510 – P 2000 20

Stroop [117] 164 decision 28 2 370 – S 1500 10

Integration of sweet taste [118] 231 flavor 9 6 1119 – S 2000 30

Face-coding localizer (objects) task [7] 232 visual 10 4 760 9947 S 1060 16
S is the number of subject; P denotes the number of stimulus categories; T is the number of scans in unites of TRs

(Time of Repetition); VROI denotes the number of voxels in ROI; 19742 voxels are extracted from MNI 152-T1-

4mm space [19] for all whole-brain datasets. Scan(ners) include G = General Electric, P=Philips, or S=Siemens

in 3 Tesla; TR is Time of Repetition in millisecond; TE denotes Echo Time in millisecond; Please see https:

//openfmri.org for more information.

mixed event-related fMRI paradigm, during which they classified items that had been trained under

dual-task conditions (denoted by 011D). More technical information can be explored in [114]. In

dataset 017, subjects performed selective stop-signal classification, where the technical information

can be found in [112]. In data 052, participants performed two blocks of an event-related probabilistic

weather prediction task (denoted by 052W). Next, they performed two more blocks of the same task

with the reward contingencies reversed that is defined by 052R. For more information, please see

[115]. In dataset 102, subjects performed a slow event-related Eriksen Flanker task. On each trial,

participants used one of two buttons on a response pad to indicate the direction of a central arrow
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in an array of 5 arrows. In congruent trials the flanking arrows pointed in the same direction as the

central arrow (e.g., < < < < <), while in more demanding incongruent trials the flanking arrows

pointed in the opposite direction (e.g., < < > < <). Participants performed two 5-minute blocks,

each containing 12 congruent and 12 incongruent trials, presented in a pseudorandom order. Tech-

nical information can be found in [39]. In data 105, participants watched eight categories of visual

stimuli, i.e., faces, houses, cats, bottles, scissors, shoes, chairs, and scramble patterns. The neural

activities for this dataset not only is analyzed for whole-brain images but also we collect data from

the temporal cortex (VT) as ROI-based data. More information is denoted in [78]. Dataset 107 is also

related to the visual cognitive tasks. Here, subjects performed a visual one-back with four categories

of items, i.e., written words, objects, scrambled objects and consonant letter strings. Further, ROI for

this dataset is selected based on the main reference [108]. In data 116, subjects performed separate

but analogous auditory and visual oddball tasks (interleaved), while we recorded simultaneous EEG-

fMRI. This thesis has only used fMRI images. For more information, please see [116]. In dataset

164, subjects performed the color-word version of the Stroop task with three conditions, including

congruent, incongruent, and neutral. Participants were instructed to ignore the meaning of the printed

word and respond to the ink color in which the word was printed. Each condition was meant to elicit

a certain level of attentional demand. Participants responded to ink color by pressing a button under

the index, middle, and ring fingers on their right hand. One button for each color (red, green, and

blue) on an MR-safe response box. More information is denoted in [117]. In dataset 231, non-caloric

beverages were mixed with new flavors, citric acid, sucralose and food coloring. Subjects with three

similarly liked but differently flavored and colored beverages who were unable to detect maltodextrin

participated in six exposure sessions during which each beverage was consumed six times consis-

tently paired with one of three caloric loads (0, 112.5 and 150 kcal). A fMRI session followed in

which participants sampled the non-caloric versions of the three exposed beverage (CS-, CS112.5,

and CS150), as well as a tasteless and odorless control solution. Technical information can be found

at [118]. Finally, data 232 measured human fMRI responses and psychophysical similarity judgments

related to four categories, i.e., objects, faces, places, scramble photos. This thesis analyzed the neural

activities of dataset 232 in two different forms, i.e., whole-brain data and the fusiform face area (FFA)

as ROI region. More information is denoted in [7].
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Appendix B. Preprocessing Steps

This section briefly explains how datasets are preprocessed in this thesis. As mentioned before,

we have developed a new toolbox called ‘easy fMRI’ for analyzing fMRI datasets (see Figure 1).

This toolbox automatically generates preprocessing script for each fMRI session, and then frequently

executes these scripts by using ‘FSL 5.0.10’ (available at https://fsl.fmrib.ox.ac.uk). As the

first step, all files of each dataset are structured in Brain Imaging Data Structure (BIDS) format [119].

Then, we have utilized the technical information (such as TR, FWHM, etc.) extracted from the original

paper of each data for generating the preprocessing script in easy fMRI. Finally, our toolbox has

applied the preprocessing steps to the raw fMRI images, including anatomical registration, motion

correction, non-brain removal, spatial smoothing. Indeed, we have used Linear Image Registration

Tool (FLIRT) algorithm [120] to anatomically register fMRI images to the Montreal Neurological

Institute (MNI) 152 standard space [44, 45]. After that, MCFLIRT method [95] and BET technique

[121] is respectively employed to apply motion correction, and removing non-brain tissue from the

raw images. As the final step for preprocessing, fMRI images are smoothed by using aGaussian kernel

of FWHM 5.0mm; grand-mean intensity normalization. Figure 1 compares raw and preprocessed

fMRI images. Further, we have manually applied the temporal alignment, including the same number

of time points are selected for all subject in each dataset.

Figure 1 (left) a screenshot of easy fMRI toolbox (middle) A snapshot of raw fMRI image (right) A snapshot of

preprocessed fMRI image
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Appendix C. 详细中文摘要

目前在神经科学和机器学习领域中的一个重大的挑战是如何正确地理解人类大脑的工作

方式，其中对大脑中思想、记忆和情感等功能的研究将促进包括科学、医学、教育等领域的发

展。功能性神经影像作为一种成像技术能够用来表示测量到的神经活动，其主要思想是利用

这些影像数据来揭示认知过程。事实上，借助这些影像数据，我们不仅能够了解人类大脑区

域的功能，而且能够研究这些区域所代表的具体信息以及该信息是如何编码的。神经活动可

以从不同层面进行分析，其中最关键的步骤是了解不同的认知任务之间的相似性 (或差异性)，

进而建立认知模型来分析神经活动，这能够帮助我们增加对人脑的认知并促进精神疾病治疗

的发展。

神经活动可以在不同层面进行分析，但主要步骤是了解分散注意力的认知任务之间的相

似性（或差异）。为了测量神经活动，可以使用不同的测量方式，包括事件相关光学信号（Event-

Related Optical Signal, EROS），正电子发射断层扫描（Positron Emission Tomography, PET），

单光子发射计算机断层扫描（Single-Photon Emission Computed Tomography, SPECT），近红

外光谱（Near-Infrared Spectroscopy, NIRS），脑磁图（magnetoencephalography, MEG），脑皮

层电图（electrocorticography, ECoG），脑电图（electroencephalography, EEG），功能磁共振成

像（functional Magnetic Resonance Imaging, fMRI）。像大多数先前的研究一样，本论文将关注

fMRI图像，该技术通过使用血氧水平依赖（functional Magnetic Resonance Imaging, BOLD）对

比作为神经激活的度量来测量神经活动。主要思想是利用神经活动的测量数据来阐明认知过

程。实际上，fMRI使我们能够询问在人类大脑某块区域中表示什么信息以及该区域如何对信

息进行编码，而不仅仅是询问区域的功能是什么。使用 fMRI技术破解神经代码有两个主要

原因。首先，它是一种非侵入性成像技术。与其他非侵入性脑成像技术相比，它还具有前所

未有的时空分辨率，没有已知的副作用。

神经活动可以以不同的形式进行分析，包括图形结构，连续信号，基于成分的表示等。在

fMRI数据集中，神经活动通常采用体素（脑图像中的体积元素）的形式。人脑解码基础的核

心概念是高维和大数据表示空间。例如，被试者的 fMRI响应（包括感兴趣区域（Region of

Interests, ROI）中的六个时间点和 1000个体素）必须由 6000维空间中的向量定义。实际上，

每个被试者的大脑神经活动被认为是神经代表性空间中的向量。换句话说，所有对象的表示
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空间可以由矩阵进行数值化表示，其中每列是局部图案特征（即，所有时间点属于唯一体素），

并且每行表示与单个刺激有关的响应向量。使用表征空间概念的主要优点是我们可以将机器

学习中的方法应用推广到不同的测量模式。

多被试者 fMRI分析是人脑解码中的一个具有挑战性的问题。实际上，多被试者 fMRI图

像必须在被试者之间对齐，以便考虑主体间的差异性。技术上有两种主要的校准方法，包括生

理结构校准和功能校准，它们可以协同工作。然而，生理结构校准只能有限地提高准确性，因

为功能区的大小，形状和解剖位置在不同被试者之间是不同的。功能对齐探索精确对齐 fMRI

图像的方法。在这里，我们尝试寻找一个共同或共享的空间，使得类内刺激之间的相关性将

被最大化，并且类间神经活动相互之间具有显著的距离。在监督学习中，共享空间由训练集

生成，然后将用于映射测试集中的神经活动。

多变量模式（Multivariate Pattern, MVP）分类是神经科学和计算机科学之间的结合，它

可以通过应用分类方法来提取和解码大脑模式。事实上，它可以预测与不同认知状态相关的

神经活动模式，也可以定义决策表面以区分不同的刺激，以解码大脑并理解它是如何工作的。

此外，MVP分类使我们能够了解大脑如何存储和处理独特的刺激。此外，MVP分类使用机

器学习算法对响应模式进行分类，将每个神经响应与实验条件相关联。模式分类涉及在神经

表示空间中定义区间，区间中的所有响应向量表示相同类别的信息，例如刺激类别，有人参

与的刺激或认知状态。它还可以用于寻找精神疾病的新疗法，甚至可以创建新一代的用户界

面。

MVP 分类分析首先将数据划分为独立的训练和测试数据集。然后，在训练数据上提取

用来确定每类神经反应向量所处区域的决策规则。不同条件下的区间之间的边界称为决策面。

然后在独立测试数据上测试分类器的有效性。为了有效的泛化测试，测试数据必须独立于分

类器的训练，包括数据预处理。接着，对每个测试数据响应向量根据由条件决定的区间进行

分类，即所处区间的类别。

分类器准确度是正确分类的测试向量的百分比。通过检查混淆矩阵，可以对分类器性能

进行更具启发性的评估。混淆矩阵表示每个实验条件下所有分类的频率，包括有关错误分类

的详细信息。对错误分类的检查能够提供哪些条件最有区别或更相似的信息。可以使用表征

相似性分析（Representational Similarity Analysis, RSA）中的其他方法分析这些信息。

作为 fMRI分析的基本方法之一，RSA评估分散注意力的认知任务之间的相似性（或距

离）。RSA检查表示空间内关于响应向量之间距离的表示结构。例如机器学习中的聚类分析，

所有响应向量对之间的完整距离集称为相异度矩阵（Dissimilarity Matrix, DSM）。尽管 MVP
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分类分析了不同条件下的载体是否明显不同，但 RSA分析了它们之间的相互关系。这种方法

具有几个优点。首先，RSA可以揭示不同脑区的表征不同，即使 MVP分类在这些区域中是

等同的。其次，通过将响应向量的位置从一组特征坐标转换为向量之间的一组距离，表示空

间的几何形状现在处于不依赖于特征坐标轴的格式。第三，RSA可以比较不同物种的神经活

动。RSA技术的主要缺点是它们不能创建任何认知模型，并且必须重复整个 RSA过程来分析

新被试者。因此，RSA技术在计算上的效率不高。

过去十五年来，人们在研究人类神经活动解码方面取得了一些重大的进展，然而，仍然

有几个长期存在的挑战，其中包括多被试者数据的功能校准、有判别性的特征的选择、无监

督相似性分析以及用于预测神经活动的监督模型的生成等问题。本文提出新的方法来分析不

同层次和应用中的认知过程，主要贡献可概括如下:

1. fMRI研究尤其是MVP分析中的一个主要挑战是使用多被试数据集。一方面，多被试

分析对于验证实验结果的泛化性和有效性至关重要，另一方面，多被试 fMRI数据分析需要在

不同被试者的神经活动之间进行准确的功能和生理结构校准，以便提高最终实验结果的精度。

实际上，为了考虑不同被试者之间的差异性，多被试 fMRI数据集必须对不同的被试者进行

校准。如前所述，主要有两种校准方法，即生理结构校准和功能校准，它们可以一起使用。生

理结构校准是采用结构MRI图像（例如，基于生理结构特征）进行校准的最常用方法，比如

Talairach对齐。然而，该方法的精度较低，因为不同被试者的脑功能区的大小、形状和生理结

构各不相同。实际上，在许多 fMRI研究中生理结构校准仅用于预处理步骤。相比之下，功能校

准试图直接校准不同被试者的大脑神经响应。超校准（Hyperalignment, HA）是最著名的功能

校准方法之一。在数学上超校准可以通过典型相关分析（Canonical Correlation Analysis, CCA）

表示，因此，可以将用于多被试 fMRI研究的超校准定义为多视图典型相关分析。由于采用无

监督的 CCA技术来解决超校准问题，因此可能无法针对MVP分析优化该解决方案。换句话

说，CCA只是找到一组映射来最大化所有被试者在相同时间点的功能活动（体素层次）之间

的相关性，然而它必须最大化同类刺激（来自同一类别）之间的相关性，并且消除不同类别刺

激之间的相关性。实际上，这是机器学习中的常见问题，例如，在分类分析中主要使用线性判

别分析（Linear Discriminant Analysis, LDA）而不是主成分分析（Principal Component Analysis,

PCA），其中线性判别分析使用诸如类标签之类的监督信息或样本之间的相似性来改进分类

方法的性能。我们首先提出了一种称为局部判别超校准（Local Discriminant Hyperalignment,

LDHA）的监督超校准方法，将局部判别分析（Local Discriminate Analysis, LDA）的概念融合

到 CCA中以改进超校准方法的性能。实际上，局部性的概念是基于训练集中的刺激类别（类
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标签）来定义的，该方法首先为每个类别的刺激生成两个集合，即作为类内邻域的最近同类刺

激集合和作为类间邻域的不同类别刺激集合，然后我们最大化类内邻域之间的相关性并且使

得类间邻域之间的相关性接近于零，以此来产生更好的超校准的解。作为一种无监督的可行

方法，我们还提出了一种新的核方法，称为深度超校准（Deep Hyperalignment, DHA）。DHA采

用深度核函数，包括一个多层神经网络，它可以实现任意非线性函数，而且它使用秩为 m的

奇异值分解 (rank-m Singular Value Decomposition, SVD) 和随机梯度下降 (Stochastic Gradient

Descent, SGD)进行优化。当把训练好的 DHA模型运用到新的被试者数据上时，不需要使用

训练数据。因此，DHA在大型数据集上的运行时间较少。此外，DHA不受固定表示空间的

限制，因为 DHA中的核是多层神经网络，它可以分别为每个被试者模拟任何非线性函数来

将大脑活动映射到一个公共空间。DHA与正则化超校准（Regularized Hyperalignment, RHA）

和多视图潜在语义分析（Multiview Latent Semantic Analysis, MLSA）有关，实际上，DHA与

上述方法之间的主要区别在于深度核函数。核超校准（Kernel Hyperalignment, KHA）等同于

DHA，DHA中所提出的深度网络被用作核函数。DHA可以看作是使用随机梯度进行优化的

多试图正则化深度典型相关分析（Deep Canonical Correlation Analysis, DCCA）。另外，当深

度广义典型相关分析（Deep Generalized Canonical Correlation Analysis, DGCCA）通过使用正

则化和秩为 m的 SVD为功能校准进行重新公式化表示时，DHA与 DGCCA有关。最后，我

们发现在二分类问题上 DHA具有较好的性能，然而在多分类问题上 LDHA的性能更好。

2. MVP分类分析首先将数据划分为两个各自独立的训练和测试数据集。然后，在训练数

据上开发决策规则，该决策规则可以确定每类神经响应向量的范围。不同条件的扇区之间的

边界称为决策面。然后在独立测试数据上测试分类器的有效性。对于有效性的泛化测试，测试

数据不能出现在整个分类器训练过程中，包括数据预处理阶段。然后将每个测试数据响应向

量分类为与其所在扇区相关的条件的另一个示例。从技术上讲，MVP分类确实是一个具有挑

战性的问题。首先，大多数 fMRI数据集是有噪声并且稀疏的，这会降低MVP方法的性能。第

二个挑战是如何定义感兴趣区域。如前所述，功能磁共振成像技术使我们能够研究不同脑区

的信息。因此，了解不同刺激对大脑区域的影响是非常重要的，特别是在复杂的任务中（同时

做一些简单的任务，如在观看照片的同时敲击按钮）。一方面，大多数之前的研究手动选择了

ROI，另一方面，定义错误的 ROI会明显降低MVP方法的性能。另一个挑战是研究大脑的成

本，把属于同一类别的不同数据集组合起来，可以视为该问题的解决方案，但是数据必须在标

准空间中进行归一化，归一化的过程会增加时间和空间的复杂性并降低 MVP技术的鲁棒性，

尤其是在基于体素级别的方法中。最后一个挑战是结果的可视化，作为机器学习技术，MVP
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代表体素或网络连接等数据的数值结果，有时，神经科学家很难找到生成结果与认知状态之

间的关系。由于大多数 fMRI数据集是高维，有噪声且稀疏的，因此一些研究采用了特征选择

或提取方法。研究者可以在两个级别中选择神经活动，即体素尺度或时间尺度。在体素尺度

的研究中，一些技术将原始体素的特征投射到嵌入空间，其中映射的特征既可以含有丰富的

信息，又能保证其线性性质。基于组件的方法，例如 PCA，LDA或独立成分分析（Independent

Component Analysis, ICA）是体素尺度最流行的技术。作为另一种选择，SearchLight方法通过

分析神经影像数据的直方图来选择特征。实际上，有两类基于 SearchLight的方法，即基于信

息的技术和基于空间分辨率的方法。基于信息的方法仅寻找具有最高强度的体素，但基于空

间分辨率的技术则考虑了所选体素的位置。实际上，本论文还提出了一种基于人脑生理结构

结构来选择特征的新方法。通过使用基于组件的方法来选择来自任何脑区（相关或不相关）的

神经活动，而基于生理结构的方法则是使用空间信息来选择特征。基于时间尺度的方法侧重

于选择时间点的子集而不是使用整个时间序列。先驱们的研究采用基于组件的方法（如 PCA

和 ICA）来选择时间点的子集，而我们提出了一种新的特征分析技术。我们所提出方法的主

要思想是非常简明易懂的。当使用氧气的水平最大化时，所提出的方法不是分析整个时间序

列，而是估计每个刺激的脑影像的快照。结果表明，该方法可以自动减少脑影像的稀疏性。这

一方法的过程分为三个阶段：首先，通过在设计矩阵的平滑版本中找到局部最大值来选择脑

影像的快照。然后，以三个步骤生成特征，包括归一化到标准空间，以自动检测的生理结构

区域的形式分割快照，以及通过 ROI水平中的高斯平滑去除噪声。最后，我们提出了两种学

习方法来分析提取的特征，即无监督学习和监督学习。本文提出了一种聚类集成方法以应用

无监督学习，其中神经活动之间的相似性或距离可以跨被试者进行比较。作为监督学习的替

代方案，我们在二元 ℓ1正则化 SVM分类器上应用集成分类（即，bagging技术），其中这些

分类器通过在生理结构区域的水平中使用每个神经活动来创建，即，每个快照表示在一个独

特刺激下的神经活动。

3.作为 fMRI分析的基本方法之一，表征相似性分析是一种监督方法，用于评估不同的

认知任务之间的相似性（或距离）。在实践中，RSA可以在数学上被看作为多组回归问题，即

用于在神经活动矩阵和设计矩阵之间进行映射的线性模型。经典 RSA采用基础的线性方法，

例如普通最小二乘法（Ordinary Least Squares, OLS）或一般线性模型（General Linear Model,

GLM）。实际上，这些方法不能在真实世界数据集上提供比较好的性能，例如具有广泛感兴

趣区域或全脑 fMRI数据的数据集。一方面，大多数 fMRI数据集中的体素数量多于时间点数

量。因此，神经活动的矩阵可能不是满秩的。另一方面，所提到的方法必须计算神经活动的协
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方差矩阵的逆，以解决 RSA问题。当协方差矩阵包括低信噪比（Signal-to-Noise Ratio, SNR）

时，该逆降低了结果的稳定性。作为第一组常用方法，一些新的 RSA方法使用贝叶斯技术。

作为这些算法之一，贝叶斯 RSA（Bayesian Representational Similarity Analysis, BRSA）将协

方差矩阵视为超参数生成模型，然后根据神经活动计算该矩阵。尽管贝叶斯方法可以显著改

善 SNR问题甚至处理一些非线性数据集，但它们仅限于受限制的变换函数（超参数的高斯分

布）。作为经典方法中的另一个问题，OLS和 GLM没有使用正则化项来避免过拟合。第二组

常用方法侧重于正则化问题。虽然岭回归方法利用额外的范数 ℓ2来解决上述问题，但最小绝

对收敛选择算子（Least Absolute Shrinkage and Selection Operator, LASSO）方法使用 ℓ1范数来

规范回归问题。作为另一种选择，Elastic Net方法在 ℓ1和 ℓ2范数之间进行权衡。此外，其他技

术开发了新的正则化项，例如八边形收缩和回归聚类算法（Octagonal Shrinkage and Clustering

Algorithm for Regression, OSCAR）或有序加权 ℓ1（Ordered Weighted ℓ1, OWL）。作为主要

问题，这些方法总是认为特征之间的关系是线性的。我们开发了深度表征相似性分析（Deep

Representational Similarity Analysis, DRSA）用于相似性分析。DRSA采用深度核函数，将非线

性神经活动转换为线性嵌入空间，然后评估该空间中映射特征之间的相似性（或距离）。此外，

它采用了一个新的正则化项，可以在不同类别的刺激的相关性和协方差之间进行权衡。由于

DRSA采用基于梯度的优化方法，因此评估高维神经影像数据（例如全脑图像）可以有效节

省时间。

4.为了解码人脑中的神经活动，多体素模式分析（Multi-Voxel Pattern Analysis, MVPA）技

术将机器学习方法应用于基于任务的 fMRI数据集。MVPA的主要问题之一是不平衡分类问

题。在实践中，有两种方法来处理这个问题，即设计不平衡分类器，或将不平衡问题转换成一

组平衡分类模型。以前的研究表明，不平衡分类器的性能可能不稳定，尤其是当我们的数据

集中存在稀疏性和噪声时。由于 fMRI数据集主要包括噪声和稀疏性，本文选择了集成方法。

从技术上讲，集成学习还包含两组解决方案，即 bagging或 boosting。其中 bagging同时生成

所有分类器，然后将它们全部组合为最终模型，然而 boosting逐渐创建每个分类器，以便通过

跟踪先前迭代的错误来提高每次迭代的性能。我们只需要注意，集成学习可以用于平衡和不

平衡问题。事实上，主要的区别来自采样策略。在平衡问题中，采样方法应用于整个数据集，

而大类的实例则在不平衡问题中进行采样。本文提出了 AdaBoost算法的一个新分支，称为不

平衡 AdaBoost二分类（Imbalance AdaBoost Binary Classification, IABC），以显著提高 fMRI分

析中最终模型的性能。简而言之，该算法首先将不平衡MVPA问题转换为一组平衡问题，然

后，它迭代地将决策树应用于每一个平衡问题中，最后，使用 AdaBoost来生成最终模型。在
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所提出的方法中，基于先前迭代的误差（失败的预测）生成最终组合的每个分类器（树）的

权重，以逐渐改善最终模型的性能。在本文中，多分类器是一种预测模型，用于将提取的特

征映射到刺激类别。通常，有两种应用多分类的技术。第一种方法直接创建分类模型，如多

类支持向量机或神经网络。相反，分解设计（间接）使用二分类器数组来解决多类问题。本

文利用纠错输出码（Error-Correcting Output Codes, ECOC）作为间接多类方法，以扩展所提出

的二分类器，用于多类预测。我们的 ECOC包括三个组件，即基本算法，编码矩阵和解码过

程。由于本文使用一对所有编码策略，所以提出的二分类器被用作 ECOC中的基础算法，其

中它为每类刺激生成二分类器。换句话说，将每个独立的刺激类别与其他类别进行比较。因

此，此策略中的分类器数量与类别数量完全相同。在解码阶段，通过将脑响应应用于基础算

法而生成的二分类预测被分配给具有最接近 Hamming距离的编码矩阵中的类别。

对 20 种不同的真实神经影像数据集进行的实验研究证实，所提出的方法的性能优于其

它经典和前沿算法。除了论文中的理论和实证研究之外，我们还创建了一个基于图形用户界

面 (Graphical User Interface, GUI)的工具箱使得研究易于重现并向公众开放，该工具箱可以运

行包括本文提出的方法在内的基于任务的 fMRI图像分析方法的标准流程，目前该工具箱已

在 https://easyfmri.github.io上公开。此外，我们还提供了一个数据仓库用于共享本文

所使用的数据集，该仓库位于 https://easyfmridata.github.io。
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