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ABSTRACT

One of the most significant challenges in both neuroscience and machine learning is comprehend-
ing how the human brain works. A better understanding of the brain—as the provenance of thoughts,
memories, and emotions—expedites the development of society, including science, medicine, edu-
cation, etc. As an imaging technology, functional Neuroimaging can be employed as a proxy for
measuring the neural activation. The main idea is utilizing these measurements of neural activities
to shed light on cognitive processes. Indeed, these images enable us to ask what information is rep-
resented in a region of the human brain and how that information is encoded, instead of asking what
is a region’s function. The neural activities can be analyzed at different levels, but a crucial step is
knowing what the similarities (or differences) between distractive cognitive tasks are and then creat-
ing cognitive models to analyze the neural activities. It is like a spotlight that allows us to increase
our knowledge related to the human brain and facilitate treatment of mental disease.

The past decade and a half have seen some promising advances in the development of approaches
for decoding human neural activities. However, there are still several long-standing challenges,
including functional alignment of multi-subject data, selecting information-rich features, similarity
analysis by using unsupervised techniques and generating supervised models for predicting the neural
activities. In this thesis, we development novel approaches in order to analyze the cognitive process
in different levels and applications. The primary contributions can be summarized as follows:

(1) We introduce two techniques for functional alignment, i.e., unsupervised and supervised
approaches. First, Deep Hyperalignment (DHA) is developed as a novel unsupervised ap-
proach for functional alignment. DHA employs a deep kernel function, including a multi-
layer neural network, which can separately implement any nonlinear function. Furthermore,
DHA uses rank-m SVD and Stochastic Gradient Descent (SGD) for optimization. Conse-
quently, DHA generates low-runtime on large datasets, and the training data is not referenced
when DHA computes the functional alignment for a new subject. As a supervised alterna-
tive, Local Discriminant Hyperalignment (LDHA) method is introduced by incorporating

the idea of Local Discriminate Analysis (LDA) into CCA for improving the performance

il
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of the hyperalignment solution. In fact, the idea of locality is defined based on the stimuli
categories (class labels) in the train-set, where the proposed method firstly generates two
sets for each category of stimuli, i.e., the set of nearest homogeneous stimuli as within-class
neighborhoods and the set of stimuli from distinct categories as between-class neighbor-
hoods. Then, these two sets are used to provide a better HA solution, where the correla-
tion between the within-class neighborhoods is maximized, and also the correlation among
between-class neighborhoods approaches to near zero. Finally, we illustrate that while DHA
can improve the performance of binary analysis, LDHA depicts better performance for multi-
class datasets.

We propose new feature analysis techniques. Indeed, the proposed method selects a snapshot
of brain image for each stimulus rather than analyzing whole of the time series. While the
classical methods just can extract features from voxel space, the proposed method selects a
subset of time-points for decoding the neural codes. In fact, these snapshots are selected by
finding local maximums in the smoothed version of the design matrix. Finally, we propose
two learning approaches. Indeed, extracted features can be analyzed by using both unsuper-
vised learning and supervised learning. This thesis proposed a cluster ensemble approach in
order to apply unsupervised learning, where similarities or distances between neural activi-
ties can be compared across subjects. As the supervised alternative, we develop a bagging
technique by using binary ¢1-regularized SVM classifiers, where they are generated by uti-
lizing each of neural activities in the level of anatomical regions. The main contribution of
this method is that it can decrease the sparsity of fMRI datasets.

We develop Deep Representational Similarity Analysis (DRSA) for similarity analysis. DRSA
employs a deep kernel function, which transforms nonlinear neural activities into a linear em-
bedded space and then evaluates the similarities (or distances) between the mapped features
in that space. Moreover, it employs a new regularization term that can make a tread-off
between correlation and covariance of different categories of stimuli. Since DRSA utilizes
gradient-based optimization approaches, it is time efficient for evaluating high-dimensional
Neuroimaging data, such as whole-brain images.

We also introduce novel supervised learning techniques. First, Imbalance AdaBoost Binary

Classification (IABC) is proposed as a novel technique for binary imbalance-classification



Nanjing University of Aeronautics and Astronautics

learning, where it is well-suited for one-vs-all classification analysis. Indeed, IABC uses
a supervised random sampling and penalty values, which are calculated by the correlation
between different classes, for improving the performance of prediction. After that, we extend
IABC for the multi-class problems, by utilizing Error-Correcting Output Codes (ECOC)
method.

Experimental studies on 20 different real-world Neuroimaging datasets confirm that the proposed
methods achieve superior performance to other classical and state-of-the-art algorithms. Besides the
theories and the empirical studies in the thesis, we also make our research easily reproducible and open
to the public. We have created a GUI-based toolbox for running the standard pipeline of analyzing
task-based fMRI images, including the proposed methods in this thesis, that is available at https:
//easyfmri.github.io. Moreover, we have also prepared a data repository for sharing employed
datasets in this thesis. This repository is available at https://easyfmridata.github.io.

Keywords: Neuroimaging analysis, deep and supervised functional alignment, deep repre-

sentational similarity analysis, imbalance classification, ensemble learning.
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Chapter 1. Introduction

One of the most significant challenges in our century is comprehending how the human brain
works [1]. As an interdisciplinary field of study, computational neuroscience can break neural codes
by employing different concepts from the mathematics, physics, psychology, psychiatry, and machine
learning. In this thesis, we focus on developing modern machine learning approaches for analyzing
the neural activities. We first present the current challenges for decoding the human brain in this

section and then introduce novel techniques for improving this procedure in the rest of thesis.

1.1 How to measure the neural activities?

The neural activities can be analyzed at different levels, but a crucial step is knowing what the
similarities (or differences) between distractive cognitive tasks are. In order to measure neural ac-
tivities, different modalities of measurement can be utilized, including Event-Related Optical Sig-
nal (EROS), Positron Emission Tomography (PET), Single-Photon Emission Computed Tomography
(SPECT), Near-Infrared Spectroscopy (NIRS), magnetoencephalography (MEG), electrocorticogra-
phy (ECoQG), electroencephalography (EEG), functional Magnetic Resonance Imaging (fMRI) [1, 2].
Like most of the previous studies [ 1-7], this thesis will focus on fMRI images, where this technique
measures neural activity by employing the Blood-Oxygen-Level-Dependent (BOLD) contrast as a
proxy for neural activation. The main idea is utilizing these measurements of neural activities to shed
light on cognitive processes. Indeed, fMRI enables us to ask what information is represented in a
region of the human brain and how that information is encoded, instead of asking what a region’s
function is [1]. There are two primary reasons for using fMRI technology to break the neural codes.
Firstly, it is a non-invasive imaging technique [2, 5]. In comparison with other non-invasive brain

imaging techniques, it also has unprecedented spatiotemporal resolution with no known side effects

[1].
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Figure 1.1 An example of representational space, where three visual stimuli are observed and depicted as three

vectors with 3-dimensions.

1.2 Representational Space

Neural activities are analyzed in different forms, including graph structures, continuous signals,
component-based representation, etc. In fMRI datasets, neural activities are usually in the form of
voxels (volume elements in brain images). The core concept that underlies the human brain decoding
is the high-dimensional and big data-representational space [4]. For instance, fMRI responses for a
subject, including six time-points and 1000 voxels in the Region of Interests (ROIs), must be defined
by a vector in a 6000-dimensional space. Indeed, the brain neural activities for each subject are
considered as a vector in the neural representational space [1]. In other words, representational space
for all subjects can be numerically defined by a matrix in which each column is a local pattern feature
(i.e., all time points belong to a unique voxel) and each row denotes a response vector related to an
individual simulation. Figure 1.1 illustrates an example of a representational space, where three visual
stimuli are observed and depicted as three vectors with 3-dimensions. The primary advantage of using
the concept of representational space is that we can generalize the applications of machine learning

methods across different modalities of measurement [1, 2, 5].

1.3 Taxonomy of brain decoding methods

As Figure 1.2 depicted, brain patterns in the task-based fMRI datasets can be extracted and de-
coded by applying machine learning techniques, i.e., Hyperalignment (HA), Feature Analysis, Rep-
resentational Similarity Analysis (RSA), Multivariate Pattern (MVP) classification, and Stimulus-
Model-based Encoding and Decoding (SMED) [1, 4, 8, 9]. In this thesis, we consider that all datasets

are preprocessed. We will explain different stages of preprocessing in the Appendix.
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Figure 1.2 Pipeline of analyzing neural activities

1.3.1 Functional Alignment

The multi-subject fMRI analysis is a challenging problem in the human brain decoding [4, 6,
9-14]. In fact, multi-subject fMRI images must be aligned across subjects in order to take between-
subject variability into account. There are technically two main alignment methods, including anatom-
ical alignment and functional alignment, which can work in unison. However, anatomical alignment
can limitedly improve the accuracy because the size, shape and anatomical location of functional loci
differ across subjects [6, 13—15]. As Figure 1.3 depicted, functional alignment explores to align the
fMRI images across subjects precisely. Here, we are looking for a common /or shared space, where
the correlation between within-class stimuli will be maximized, and the between-classes neural activi-
ties have significant distances in comparison with each other. In supervised learning, the shared space
is generated by the training-set and then will be used for mapping neural activities in the testing-set
[9].

As the widely used functional alignment method [4, 6, 9, 11-14], Hyperalignment (HA) [6] is
an ‘anatomy free’ functional alignment method, which can be mathematically formulated as a multi-
view representational learning problems [2, 4, 5, 11]. Original HA does not work in a very high
dimensional space [9]. In order to extend HA into the real-world problems, Xu et al. developed the
Regularized Hyperalignment (RHA) by utilizing an EM algorithm to seek the regularized optimum
parameters iteratively [11]. Further, Chen et al. developed Singular Value Decomposition Hyper-
alignment (SVDHA), which firstly provides dimensionality reduction by SVD, and then HA aligns

the functional responses in the reduced space [12]. In another study, Chen et al. introduced Shared
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Figure 1.3 An example of functional alignment

Response Model (SRM), which is technically equivalent to Probabilistic CCA [9]. In addition, Gun-
tupalli et al. developed SearchLight (SL) model, which is actually an ensemble of quasi-CCA models
fits on patches of the brain images [15]. Lorbert et al. illustrated the limitation of HA methods on
the linear representation of fMRI responses. They also proposed Kernel Hyperalignment (KHA) as
a nonlinear alternative in an embedding space for solving the HA limitation [4]. Although KHA
can solve the nonlinearity and high-dimensionality problems, its performance is limited by the fixed
employed kernel function [13]. As another nonlinear HA method, Chen et al. recently developed
Convolutional Autoencoder (CAE) for whole-brain functional alignment. Indeed, this method refor-
mulates the SRM as a multi-view autoencoder [5] and then uses the standard SL analysis [15] in order
to improve the stability and robustness of the generated classification (cognitive) model [16]. Since
CAE simultaneously employs SRM and SL, its time complexity is so high [13]. In a nutshell, there
are four main challenges in previous HA methods for calculating accurate functional alignments, i.e.,
nonlinearity [4, 13, 16], high-dimensionality [9, 12, 13], using a large number of subjects [13, 17],

and supervised learning [14, 18].
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1.3.2 Feature Analysis

Since most of fMRI datasets are high-dimensional, noisy, and sparse, some studies employed
feature selection or extraction methods. Neural activities can be selected in two levels, i.e., voxels, or
time points.

As the first group, some techniques project features of raw voxels to an embedded space, where
the mapped features are information-rich, linear, etc. The component-based approaches such as Prin-
cipal Component Analysis (PCA), Independent Component Analysis (ICA), or Linear Discriminant
Analysis (LDA) are the most prevalent techniques in this stage [8, 19, 20]. As another alternative,
SearchLight methods select features by analyzing the histogram of neuroimaging data [7, 15]. In-
deed, there are two categories of SearchLight-based approaches, i.e., information-based technique,
and spatial-resolution-based methods. While the information-based approach is only looking for the
voxels with the highest-intensity, the spatial-resolution-based techniques consider the position of se-
lected voxels [7]. Indeed, this thesis also presents a new approach for selecting features based on the
anatomical structure of the human brain. While neural activities from any region (related, or irrele-
vant) are selected by using the component-based methods, the anatomical-based approach employs
spatial information for selecting features.

The next group of methods focused on selecting a subset of time points rather than using the
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Figure 1.5 An example of Multivariate Pattern (MVP) classification [1]

whole of time series. Pioneer studies employed the component-based approaches such as PCA [21]
and ICA [22] to select the subset of time points. In this thesis, we also present a new approach by using
the design matrix for selecting time points with the highest probability of visualizing neural activities
of different stimuli. As Figure 1.4 illustrates, we analyze the Hemodynamic Response Function (HRF)
signal related to each stimulus and then select the time point in the local maximum, where this time
point includes a snapshot of the neuroimaging data with the highest probability of demonstrating

efficient neural activities corresponding to that stimulus.

1.3.3 Multivariate Pattern (MVP)

Multivariate Pattern (MVP) classification is a conjunction between neuroscience and computer
science, which can extract and decode brain patterns by applying the classification methods [23]. In
fact, it can predict patterns of neural activities associated with different cognitive states [24, 25] and
also can define decision surfaces to distinguish different stimuli for decoding the brain and under-
standing how it works [1, 26]. Further, MVP classification can enable us to understand how brain
stores and processes distinctive stimuli. Moreover, MVP classification uses machine learning algo-

rithms to classify response patterns, associating each neural response with an experimental condition.
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Pattern classification involves defining sectors in the neural representational space in which all re-
sponse vectors represent the same class of information, such as a stimulus category [1], an attended
stimulus [8], or a cognitive state [24, 25]. It can also be used to find novel treatments for mental
diseases or even to create a new generation of the user interface.

As Figure 1.5 depicted, an MVP classification analysis firstly divides the data into independent
training and testing datasets. Then, the decision rules that determine the confines of each class of
neural response vectors are developed on the training data. The border between sectors for different
conditions is called a decision surface. The validity of the classifier is then tested on the independent
test data. For valid generalization testing, the test data must play no role in the development of the
classifier, including data preprocessing. Each test data response vector is then classified as another
exemplar of the condition associated with the sector in which it is located [1].

Classifier accuracy is the percentage of test vectors that are correctly classified. A more revealing
assessment of classifier performance is afforded by examining the confusion matrix. A confusion
matrix presents the frequencies for all classifications of each experimental condition, including the
details about misclassifications. Examination of misclassifications adds information about which
conditions are most distinct and which are more similar. This information is analyzed using additional

methods in RSA.

1.3.4 Representational Similarity Analysis (RSA)

As one of the fundamental approaches in fMRI analysis, Representational Similarity Analysis
(RSA) [27] evaluates the similarities (or distances) between distractive cognitive tasks. As Figure 1.6
illustrated, RSA examines the structure of representations within a representational space regarding
distances between response vectors. Such as clustering analysis in machine learning, the complete set
of distances among all pairs of response vectors is known as the dissimilarity matrix (DSM). Figure
1.7 shows an example of DSM matrix. Whereas MVP classification analyzes whether the vectors
for different conditions are clearly distinct, RSA analyzes how they are related to each other. This
approach confers several advantages. First, RSA can reveal that representations in different brain
areas differ even if MVP classification is equivalent in those areas [27, 28]. Second, by converting the
locations of response vectors from a set of feature coordinates to a set of distances between vectors,

the geometry of the representational space is now in a format that is not dependent on the feature
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Figure 1.6 An example of Representational Similarity Analysis (RSA) [1]

coordinate axes [1, 27, 28]. Third, RSA can compare the neural activities across distinctive species.
For instance, Figure 1.8 illustrates the comparisons of different visual stimuli between monkeys brain
and human brains [28]. The main disadvantage of RSA techniques is that they do not create any
cognitive models and the whole of RSA procedure must be repeated for analyzing a new subject.
Consequently, RSA techniques are not computationally efficient [1].

In practice, RSA can be mathematically formulated as a multi-set (group) regression problem,
i.e., a linear model for mapping between the matrix of neural activities and the design matrix. Original
RSA employs basic linear approaches, such as Ordinary Least Squares (OLS) [7] or General Linear
Model (GLM) [28]. Further, some of the modern approaches utilize the Bayesian technique [3, 29].
For instance, Bayesian RSA (BRSA) [3] considers the covariance matrix as a hyper-parameter gener-
ative model and then calculates this matrix from neural activities. As other alternatives, some studies
employ regularized techniques, i.e., Ridge Regression [30], Least Absolute Shrinkage and Selection
Operator (LASSO) [31], Elastic Net method [32], Octagonal Shrinkage and Clustering Algorithm for
Regression (OSCAR) [33], and Ordered Weighted /1 (OWL) [34, 35]. In some sense, RSA is similar

to clustering techniques in machine learning [36—38].
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Figure 1.9 An example of Stimulus-Model-based Encoding and Decoding (SMED) [1]

1.3.5 Stimulus-Model-based Encoding and Decoding (SMED)

The previous approaches, including MVP classification, RSA, and hyperalignment, compare
different neural activities generated by distinctive stimuli in the same subject or across different sub-
jects. Indeed, these methods cannot enable us to predict the neural activities for a novel stimulus or
even a new dataset [1]. Stimulus-Model-based Encoding and Decoding (SMED) methods can extend
the generated MVP /or RSA analysis for decoding the neural activities of the novel stimuli [39]. As
Figure 1.9 depicted, SMED predicts the response to stimulus features rather than to the whole stimuli.
Further, SMED technique focused on mapping vectors from feature space belonging to each stimulus
to the shared neural spaces. Indeed, SMED is limited to Bayesian reconstruction based on similarities
to aset of priors [1]. In practice, this technique can be useful for neuroscientist after a robust cognitive

model is generated [1].

1.4 Organization of this thesis

In Chapter 2, we introduce two techniques for functional alignment. As the first technique,
Local Discriminant Hyperalignment (LDHA) method incorporates the idea of Local Discriminate
Analysis (LDA) into CCA [40] in order to improve the performance of the hyperalignment solution.
Indeed, LDHA maximizes the correlation between homogeneous stimuli (from the same category)
and also removes the correlation between different categories of stimuli. Furthermore, we propose
Deep Hyperalignment (DHA) as a novel nonlinear approach for functional alignment. DHA is not
limited by a restricted fixed representational space because the kernel in DHA is a multi-layer neural

network, which can separately implement any nonlinear function [41, 42] for each subject to transfer
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the brain activities to the shared space.

In Chapter 3, we develop novel feature analysis techniques. While the classical methods just can
extract features from voxel space, the proposed method discusses how to select a subset of time-points
for analyzing the neural activities. Indeed, the proposed method estimates and analyzes a snapshot
of brain image for each stimulus when the level of using oxygen is maximized. In other words, these
snapshots are selected by finding local maximums in the smoothed version of the design matrix. The
main advantage of this method is that it can decrease the sparsity of fMRI datasets. Further, we
propose two learning approaches, including both unsupervised learning and supervised learning.

In Chapter 4, we propose Deep Representational Similarity Analysis (DRSA) as a new deep
extension of RSA method for similarity analysis. Indeed, DRSA utilizes a deep network—including
multiple stacked layers of nonlinear transformation—as the kernel function, which maps nonlinear
neural activities to a linear information-rich embedded space and then evaluates the similarities (or
distances) between the mapped features. Further, the proposed method employs a new regulariza-
tion term that can make a trade-off between correlation and covariance of distinctive cognitive tasks.
Since DRSA uses gradient-based optimization approaches, it is time efficient for evaluating high-
dimensional fMRI images, such as whole-brain datasets.

In Chapter 5, we propose novel supervised learning techniques. Firstly, we introduce a novel ap-
proach for imbalance-classification learning. Indeed, this method is well-suited for one-vs-all classi-
fication analysis. Then, we focus on multi-class learning approach. Here, we utilize Error-Correcting
Output Codes (ECOC) as an indirect multi-class approach in order to extend the proposed binary
classifiers for the multi-class prediction.

In Chapter 6, we then present contributions and the conclusions. Besides the theories and the
empirical studies in the thesis, we also make our research easily reproducible and open to the pub-
lic. We have created a GUI-based toolbox for running the standard pipeline of analyzing task-based
fMRI images, including the proposed methods in this thesis, that is available at https://easyfmri.
github.io. Moreover, we have also prepared a data repository for sharing task-based fMRI datasets.
This repository is available at https://easyfmridata.github.io. It includes more than 35 pre-
processed real-world datasets related to distinctive cognitive tasks.

Figure 1.10 illustrates the graphical abstract of this thesis across chapters.

Prior Publications Parts of this thesis have been published in [8, 13, 14, 19, 20, 36-38].
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Chapter 2. Supervised and Deep Hyperalignment

One of the main challenges in fMRI studies, especially MVP analysis, is using multi-subject
datasets. On the one hand, the multi-subject analysis is critical to figure out the generality and va-
lidity of the generated results across subjects. On the other hand, analyzing multi-subject fMRI data
requires accurate functional and anatomical alignments between neuronal activities of different sub-
jects in order to increase the performance of the final results [6, 12]. Indeed, the fMRI datasets must
be aligned across subjects in multi-subject studies in order to take between-subject variability into ac-
count. There are two main alignment approaches, i.e. anatomical alignment and functional alignment,
which can work in unison. The anatomical alignment is the most common method for aligning fMRI
images based on anatomical features by employing structural MRI images, e.g., Talairach alignment
[43], or Montreal Neurological Institute (MNI) [44, 45]. However, this method generated limited ac-
curacy since the size, shape and anatomical location of functional loci differ across subjects [46, 47].
Indeed, anatomical alignment is just used in many fMRI studies as a preprocessing step. By contrast,

functional alignment seeks to directly align the brain neural responses across subjects.

2.1 Functional Alignment Techniques

There are several non-CCA based studies, which used functional and anatomical features for
fMRI alignment. Conroy et al. introduced a new way to maximize the alignment of intra-subject
patterns by utilizing the cortical warping [10]. Sabuncu et al. used cortical warping for maximizing
the Inter-Subject Correlation (ISC) across subjects [48]. Dmochowski et al. maximized ISC by ag-
gregating the subjects’ data into an individual matrix [49]. Micheal et al. also proposed the GICA,
IVA algorithms for rest-mode fMRI (rs-fMRI) functional alignment. Since this method does not as-
sume time-synchronized stimulus, it concatenates data along the time dimension (implying spatial
consistency) and learns spatial independent components [50].

As the widely used functional alignment method [4-6, 9, 11-14, 16], Hyperalignment (HA)
[6] is an ‘anatomy free’ functional alignment method, which can be mathematically formulated as a

multiple-set Canonical Correlation Analysis (CCA) problem [4, 11, 51]. Original HA does not work
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in a very high dimensional space [9, 13]. In order to extend HA into the real-world problems, Xu
et al. developed the Regularized Hyperalignment (RHA) by utilizing an EM algorithm to iteratively
seek the regularized optimum parameters [11]. Lorbert et al. illustrated the limitation of HA methods
on the linear representation of fMRI responses. They also proposed Kernel Hyperalignment (KHA)
as a nonlinear alternative in an embedding space for solving the HA limitation [4, 5]. Although
KHA can solve the nonlinearity and high-dimensionality problems, its performance is limited by the
fixed employed kernel function. Sui et al. employed the multimodal CCA and ICA approaches on
multimodal data for identifying the unique and shared variance associated across modalities [52, 53].
Further, Chen et al. developed Singular Value Decomposition Hyperalignment (SVDHA), which
firstly provides dimensionality reduction by SVD, and then HA aligns the functional responses in the
reduced space [12]. In another study, Chen et al. introduced Shared Response Model (SRM), which
is technically equivalent to Probabilistic CCA [16].

Guntupalli et al. developed a linear model of shared representational spaces based on the original
HA. This model can trace fine-scale distinctions among varied responses with response-tuning basis
functions that are common across subjects and models. Indeed, this method is actually an ensemble of
quasi-CCA models fits on patches of the brain images [15]. As another nonlinear HA method, Chen
et al. recently developed Convolutional Autoencoder (CAE) for whole brain functional alignment.
Indeed, this method reformulates the SRM as a multi-view autoencoder and then uses the standard SL
analysis [15] in order to improve the stability and robustness of the generated classification (cognitive)
model. Since CAE simultaneously employs SRM and SL, its time complexity is so high. Turek et al.
proposed a semi-supervised HA that simultaneously applies the alignment and performs the analysis.
Indeed, this method also used the SRM [9] for alignment and then Multinomial Logistic Regression

is employed for classification [18].

2.2 Hyperalignment

Preprocessed fMRI time series collected for S subjects can be defined by X = {xﬁfl)n} €
R™V i = 1:S,m = 1:T,n = 1:V, where T denotes the number of time points in unites of TRs
(Time of Repetition), V' is the number of voxels, and 2, € R denotes the functional activity for the
i-th subject in the m-th time point and the n-th voxel. For simplicity, assume that all data points are

normalized by zero-mean and unit-variance, X ~ N(0,1), i = 1:S. If the original data points are

14



Nanjing University of Aeronautics and Astronautics

not normalized, we can consider this assumption as a preprocessing step. Since there are more voxels
than TRs in most of the fMRI studies, X(¥ and the voxel correlation map (X®) "X ) may not be full
rank [4, 5, 9, 11-14, 16]. In training-set, time synchronized stimulus ensures temporal alignment,
i.e. the m-th time point for all of the subjects represents the same simulation [11, 12]. Indeed, the
main goal of HA methods is aligning the columns of X*) across subjects [4, 14]. In previous studies,
Inter-Subject Correlation (ISC) was defined for functional alignment between two distinct subjects as

follows, where ¢r() is the trace function: [4, 5, 11, 12]
ISC(X®, X0) = (1/v)tr<(x<@'>)Tx<f>>. 2.1)

By considering X) ~ N(0, 1), ¢ = 1:S as column-wise standardized, ISC lies in [~1, +1]. Here, the
large values illustrate better alignment [4, 11]. Based on (2.1), Hyperalignment (HA) problem can be
defined as follows: [4, 5, 9, 11, 12]

ISC(X®R®, XWRY) . (RO @ORO =1, ¢=1:8 .
mZZ ) st (R) =18 Q2)

where I is the identity matrix, R(Y) = {r%%} € RV*V denotes the solution for /-th subject, and
the matrices @ € RV*V ¢ = 1.5 are symmetric and positive definite. By considering ®© = I,
(2.2) is equivalent to a multi-set orthogonal Procrustes problem [51], which is commonly used in
share analysis. Furthermore, if ®© = (X()TX® then (2.2) denotes a form of multi-set Canonical
Correlation Analysis (CCA) [4, 11] as follows:

max Z Z r((XORD)TXOURD) si (XORO)XORO =1, £=15 (23)

(1) R()
RI.RY =1 j=i+1

Lemma 2.1. (2.3) maximizes the Pearson correlation (cov(A, B) /o a0 ) between each pair of mapped

features (XORY ) across subjects [11, 40].

Proof. By considering @) € RV*V = E [(X“))TX“)} = (X)X as Expectation for population,

the Pearson correlation on (2.3) can be defined as follows:

S DR HRU
S (BT )
R RG) \/((R()) ~ —

p e 9)T®ORM)/(R))TOUIRV))

Since (R“))TEIV)“)R(‘) =1, we approach from (2.4) to (2.3). O

15



Functional Alignment and Feature Learning with Neuroimaging Data

The constrains must be imposed in R to avoid overfitting [11]. In order to seek an optimum
solution, solving (2.3) may not be the best approach because there is no scale to evaluate the distance

between current result and the optimum (fully maximized) solution [4, 13].

Lemma 2.2. (2.3) can be rewritten as following minimization problem:

S S
mn 33" HX@)R@) _ XWORO)
i=1 j=i+1

.
min_ s.t. (x“)R“)) XORO =1, (=1:5, (2.5
R() RO

2
)
F

where (2.5) approaches zero for an optimum result.

Proof.
S S 9 S S .
- XOR® — XORD|” = mi ¢ ( XOR X(nR(z’))
tr((X(j)R(j))TX(j)R(j)> _ Qtr((XmR(z’)) XmR(J)))

.
Since (X“)R(@) XOR® =1, so we have:

S S S S
mn Y Y (zvnew - 2tr((x<i>R<i>)TXU>R<J‘>>) = max Y tr((X@)R(i))TXU)RO')).

() R
RERTT j=im

The main assumption in the original HA is that the R®), ¢ = 1:S are noisy ‘rotations’ of a shared

space (or common template) [6].

Lemma 2.3. The equation (2.5) is equivalent to:

s . . 2 T
min 3 HX@R(“ . GH L st (X(@R(@) XORO =1, ¢ =1:8, (2.6)
R® .G P F

where G € RV is the shared space:

S
Z XORG) (2.7)
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Proof.
; ORO _ xORD||” =
i Z > [xeme - xomo
=1 j=i+1
S S -
in tr( XORO) X<z>R<z>) +tr( XOR) TXOR! >) _ Qtr( XOROY T XOR! ))
R(® RG) ;];l ( ( ) ( ) ( )
1 S S
= min - (Str((X(i)R(l)) XORC )—2Str(( XOR®) )+Z( (XU XO‘)R(J‘)))
R() RG), 2 4 :
G i=1 j=1
1 5 . s
— min ~[[sS"t ( XORO) XmR(i)) <2 2 (GTG ) N "¢ ( (XDRD) Y(j)R(j>>
U H(ORCEY 60+ (3w
G = 7j=1
S
_ - R® (i) (i )_( 2 T )
m)113}2<( S;u( TXORG 25°tr(G' G) )
S
i t IR X(z‘)R(i)> ( 20:(GT )
I{P}%((S; r( S*tr(G'G)
1 1 i T 2 T
_]?(%1%((52&( XORD) XUR())) ~2(5°r(G7G)) + (S%u(G G)))
S
~ min (tr<(x<i>R<i>)Tx<i>R<i>) +tr(GTG) — 2tr<(X(i)R(i))TG>)
ROG
S
= mi G — XOR®
min 3| .
u
Classical HA approach can be generalized to the real-world problems as follows:
2 T
RO — G‘ ( X R“)) XO)VRO =1, ¢ = 1:8. 2.8
l{g}%z | rx® p F(XO)RD)f(XO)RO =1, 2.8)

Here, if f (x) = x, then we recover the original HA. Further, if f(x) denotes any classical fixed kernel
function (e.g. Gaussian), then (2.8) is equivalent to Kernel Hyperalignment (KHA) [4, 5]. In addition,
if f (x) illustrates an SVD-based feature selection, then (2.8) is called SVD Hyperalignment (SVDHA)
[12]. As another alternative, (2.8) can be optimized by using different approaches. For instance,
Regularized Hyperalignment (RHA) used the Generalized CCA [11], Shared Response Model (SRM)
employed Probabilistic CCA [9].
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Figure 2.1 Comparison of unsupervised and supervised HA algorithms

2.3 Local Discriminant Hyperalignment

Since the unsupervised CCA techniques are employed for solving HA problems, the solution
may not be optimized for supervised MVP analysis. In other words, CCA just finds a set of mappings
to maximize the correlation between the same time-points of functional activities (in voxel-level) for
all subjects, while it must maximize the correlation between homogeneous stimuli (from the same
category) and also remove the correlation between different categories of stimuli. Indeed, this is a
common problem in Machine Learning. For instance, Linear Discriminant Analysis (LDA) is mostly
used rather than Principal Component Analysis (PCA) in the classification analysis, where LDA uses
the supervision information such as class labels or similarity between samples for improving the per-
formance of classification methods.

In this section, we introduce Local Discriminant Hyperalignment (LDHA) method, which incor-
porates the idea of Local Discriminate Analysis (LDA) into CCA [40] in order to improve the perfor-
mance of the hyperalignment solution. As Figure 2.1 depicted, the idea of locality is defined based on
the stimuli categories (class labels) in the train-set, where the proposed method firstly generates two
sets for each category of stimuli, i.e. the set of nearest homogeneous stimuli as within-class neighbor-
hoods and the set of stimuli from distinct categories as between-class neighborhoods. Then, these two
sets are used to provide a better HA solution, where the correlation between the within-class neigh-
borhoods is maximized, and also the correlation among between-class neighborhoods approaches to
Zero.

As mentioned before, (2.3) may not be optimum for supervised fMRI analysis. In order to im-
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prove the performance of functional alignment, Local Discriminant Hyperalignment (LDHA) uses
following objective function:

max Z Z tr( AGD) _ %g(@j))Rw) (2.9)

(1) R(G)
RRY = 1 j=i+1

where 7 is the number of within-class elements, and 7" denotes all time points. Further, the covariance

within-class matrix A9 = {6%7{)} and the covariance between-class matrix Q) = {w,(n’,{)} are

denoted as follows:

T T
oLhd) = Z Z aekmﬁr)nx,gz + oy a:é )a:(]) (2.10)
/=1 k=1
T T . .
Wi =33 "1 - an)zg g + (1— ag)ywy) Q.11
(=1 k=1

where oy, = 1 for within-class elements, otherwise it is zero. Moreover, asq(fl)n € R is the neural

activity for the m — th time point and the n — ¢th voxel in the ¢ — th subject.

Lemma 2.4. Like the classical CCA, LDHA can be solved as a generalized eigenvalue decomposition

problem.

Proof. We firstly define following matrix by using the covariance matrices:

@g) — Ald) _ 1 o)
@7 = A TQQ 2 (2.12)
Then, we have:
PO — (V) @) (W)~ (2.13)

where PO £ PG4, and ®© = (X©)TX®. Now, we can apply rank-m SVD decomposition [42]

on P(9) as follows:
i) SVD (i) 3 (0.4) (T(i,j))T_ (2.14)
Finally, we can calculate the mapping as follows:
5
Z (@) 0l (2.15)

In addition, the shared space can be calculated by using (2.7). ]
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Algorithm 2.1 A template for MVP analysis by using LDHA

Input: Train Set X, = 1.3, Test Set X1, j = 1:5:

Output: Classification Model 7, Classification Performance (ACC, AUC):
Method:

01. For each X, = 1:9, calculating R® by using (2.15).

02. Generating the shared space (G) by utilizing (2.7).

03. Training a classifier 7 by using X®R® 4 = 1:S.

04. For each X9, j = 1.9, calculating R®) by using G and (2.6) [11].
05. Evaluating (ACC, AUC) the trained classifier 7 by using X/R®.

Algorithm 2.1 demonstrates a general template for MVP analysis based on LDHA method. Here,
X® i = 1:S is the training set for S subjects. Further, )/Z(j), Jj = 1:5 denotes the testing set for S
subjects. As this algorithm depicted, the procedure of generating the HA template (G) in the training
stage is changed, while the template is used in the testing stage such as the unsupervised HA methods
[4, 11]. Therefore, we do not need the class labels in the testing stage. Indeed, the proposed method
in comparison with the unsupervised solutions just generates more optimum HA template for aligning
functional neural activities, where this template can maximize the correlation between all stimuli in

the same category and minimize the correlation between different categories of stimuli.

2.4 Deep Hyperalignment

This section introduces a new nonlinear methods that can improve three issues in HA problems,
i.e., nonlinearity, high-dimensionality, and using a large number of subjects. As Figure 2.2 depicted,
we propose a novel kernel approach, which is called Deep Hyperalignment (DHA), where it em-
ploys deep network, i.e. multiple stacked layers of nonlinear transformation, as the kernel function,
which is parametric and uses rank-m SVD and Stochastic Gradient Descent (SGD) for optimization.
Consequently, DHA generates low-runtime on large datasets, and the training data is not referenced
when DHA computes the functional alignment for a new subject. Further, DHA is not limited by
a restricted fixed representational space because the kernel in DHA is a multi-layer neural network,

which can separately implement any nonlinear function [13, 41, 42] for each subject to transfer the
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brain activities to a common space. Based on (2.8), objective function of DHA is defined as follows:

2

S
min Z HG — f; (X(i);e(i))R(i)
=1

G.R® ¢(®)

F

1
G:

|

S
Z f (X(j);ﬂ(j))R(j), (2.16)
j=1

s.t. (R“))T(<f£(X(£);0(£))>Tfe(X(e);9(e))—|—eI>R(£):I, (=18,

where 9(4)={W%), b))

m

, m=2:C } denotes all parameters in (-th deep network belonged to (-th sub-
ject, RO € RVnewxVnew is the DHA solution for ¢-th subject, V,,.., < V' denotes the number of features

after transformation, the regularized parameter ¢ is a small constant, e.g., 10~%, and deep multi-layer
kernel function f,(X;0(9) € R™*Vrew is denoted as follows:

£o(X9:00) = mat (hg>, T, vnew) , 2.17)

where 7" denotes the number of time points, C' > 3 is number of deep network layers, mat(x, m, n):R"" —

R™*™ denotes the reshape (matricization) function, and h((ff) € RTVnew is the output layer of the fol-
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lowing multi-layer deep network:

ho =g (w(e)h(@

m “m—1

+ bfﬁ’), where h{” = vec(X®) and m = 2:C. (2.18)

Here, g:R — R is a nonlinear function applied componentwise, vec:R™*" — R™" denotes the
vectorization function, consequently hgg) = vec (X(E)) € RTV. Notably, this thesis considers both
vec() and mat() functions are linear transformations, where X € R™*" = mat(vec(X), m,n) for
any matrix X. By considering U™ units in the m-th intermediate layer, parameters of distinctive
layers of f,(X(?;0)) are defined by following properties: WY € RTVaew <UD gnq pl) ¢ RTVeew
for the output layer, WS € RU®*TV and b € RU™ for the first intermediate layer, and W', €

RU™ XU p 0 c RUM and Y € RV™ for m-th intermediate layer (3 < m < C — 1).

Remark 1. Same as previous approaches for HA problems [4, 9, 11, 12], a DHA solution is not
unique. If a DHA template G is calculated for a specific HA problem, then QG is another solution
for that specific HA problem, where Q € RV»ew*Vrew can be any orthogonal matrix. Consequently, if
two independent templates G1, G, are trained for a specific dataset, the solutions can be mapped to

each other by calculating HGQ — QG ||, where Q can be used as a coefficient for functional alignment

in the first solution in order to compare its results to the second one. Indeed, G, and G, are located

in different positions on the same contour line [2, 9, 13].

We propose an effective approach for optimizing the DHA objective function by using rank-
m SVD and SGD. This method seeks an optimum solution for the DHA objective function (2.16)
by using two different steps, which iteratively work in unison. By considering fixed network pa-
rameters (0(“)), a mini-batch of neural activities is firstly aligned through the deep network. Then,
back-propagation algorithm is used to update the network parameters. The main challenge for solv-
ing the DHA objective function is that we cannot seek a natural extension of the correlation object to
more than two random variables. Consequently, functional alignments are stacked in a .S x S matrix
and maximize a certain matrix norm for that matrix [42].

As the first step, we consider network parameters are in an optimum state. Therefore, the map-
pings (R, ¢ = 1:5) and template (G) must be calculated to solve the DHA problem. In order to scale
DHA approach, this thesis employs the rank-m SVD [42] of the mapped neural activities as follows:

1o (X(f);e(f)) SVD (0)y (0 (T(f))—r, (=15 (2.19)
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where £() € R™*™ denotes the diagonal matrix with m-largest singular values of the mapped feature
fo(X0;09), @O € RT*™ and PO € R™*Vrew are respectively the corresponding left and right
singular vectors. Based on (2.19), the projection matrix for /-th subject can be generated as follows:

[42]

:fe(x<e>;e<f>)(<fe(x<“ )) fo(X9:01) + e (ff(x(@;w)f

1 ] (2.20)
— Oz’ (2@) Z) "+ d)‘ 0 (@) = a®p® (Qw)D(e)) 7
where P¥) € R7*T is symmetric and idempotent [42], and diagonal matrix D(©) € R™*™ s
p®(D®)" = (=)' <2<4> =) + eI> >0 2.21)

Further, the sum of projection matrices can be defined as follows, where AAT is the Cholesky de-

composition [42] of A:
A=Y PO =AAT, where AcR"™ =[QUDV QD] (2.22)
Lemma 2.5. By considering (2.22) and following mapping function:

—1
RO = (( fe (X“);e“)))T fo(X9:09) + el) (fg (X“);B“))>TG, (2.23)

the objective function of DHA (2.16) can be rewritten as follows:

min ZHG fX(Z z))R(Z)

G,R(® g()

= T : 2.24
max (tr(G AG) ) (2.24)
Proof. For simplicity, we consider that f,(X®;0()) = Y(). By replacing (2.23), we have:

—1 2
(0) @\ H
i Sy (v ) o

Based on (2.20), we have:
manHG POG|% —manH (1-P9)G|% —mantr(( G)T(I—P(i))G>
i TT—P ' (T - p@ — mi T(1 - p®)?
—mcln;tr(G (I P ) (I P )G> —rrgn;tr<G (I P )G)

23



Functional Alignment and Feature Learning with Neuroimaging Data

Since P(¥) is idempotent (P )) = P() [42, 54], we have:
S
T po) . T (12 (N2 (z’))
mantr (G ) G) mén;tr (G (I + (P ) 21P G)
S
—mi T(12 (@) _ op@) — mi T - p®
—rrgnZtr(G (I +P 2P >G) —rrgnZtr<G (I P )G)
= mmZtr(GTIG G'p? > = mlnz ( —tr(GTP >G))
—mi _ T ()
—n};ln<SV tr(G (;P )G))

Based on (2.22), we have:
= mm (SV tr (GTAG> ) = max (tr(GTAG) )
O

Based on Lemma 2.5, the first optimization step of DHA problem can be expressed as eigende-
composition of AG = GA, where A = {)\;... A7} and G respectively denote the eigenvalues and
eigenvectors of A. Further, the matrix G that we are interested in finding, can be calculated by the
left singular vectors of A=GXY', where G'G =1 [42, 54]. This thesis utilizes Incremental SVD

[55] for calculating these left singular vectors.

Lemma 2.6. In order to update network parameters as the second step, the derivative of . =
EgT:1 Ao, which is the sum of eigenvalues of A, over the mapped neural activities of (-th subject is
defined as follows:
OZ
Ofe (X(Z) ;9(2))

Proof. For simplicity, we define f, (X(e);ﬂ(e)) = Y and the covariance matrix for (-th subject as

—2RG" - 2RI(RV)"(f; (X@;e“)))T. (2.25)

follows:
O — ((Y“))TY“) + eI> (2.26)
Further, the inverse of the covariance matrix is denoted for /-th subject as follows:

—1

o0 = (@) = <(Y(z>)TY<Z> I d) (2.27)
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where this matrix is symmetric (@ = (Q(Z))T). Based on (2.27), the projection (2.20) can be
rewritten as follows:

PO — YO PO (Y(f))T (2.28)

Further, the final mappings (2.23) can be reformulated as follows:
RY =0 (Y")' G (2.29)

Since 9Z/sa = GG [14], we reformulate the left side of (2.25) based on the chain rule as follows:

Vi Vi
= GGT) (2.30)
aY“ le 0Aur oY) szl (GG ).. oy<)

By considering (2.22), the product rule, and this key point that P() is the only projection related to

Y® we have:

new new (e)
) | 0 @ am
aY(g) = aY( = 5#6 Z YT’L i + 5 Z Y ]a _'_ §:1Y Y
o o N o 2.31)
8@
_ ¢ ONT (¢ {4 (040
=0, (@O (Y)T) - 6.(@0(Y) ) +ZYWY et S
aTt aYocB
The last term also can be calculated by using the chain rule as follows:

Y SONE PV CIF U R
ji ji mn 0 @ 0 ()
0n Z = (¢ 0 Z ((I)jmq)m <5o¢mY5n + 5o‘nYﬁm>)

aY((x/z’ m,n=1 q>£”)7L 6Y() m,n=1

T
O (Z 0 © 0) ¢ O\ T (0) 14 oNT
— -3 oYY Z@ oY), = o) (@ (v?) >w - o) (o0 (Y") >j5
=1
(2.32)
By applying (2.32) to (2.31), we have:
@PL@ =5 .(®O(Y® T 5.2 @O (Yy® T o0 (y® T Y©OPO (y© T
@ ~ OuB (YY) + 07 (YY) - (YY) (")
aYaﬁ aTt ap ap BT
_ (qﬂ) (Ya’))T)M (Yw)q,@) (Yw))T)mL =5, (q,w) (Yw))T)M s 6( 0 (Yw))T)a#_
<q,(é> (Y© T) <p<f> _(@® (Ym)T) (Fw)
ap BT ar B
(I _p! )) (q,w) YO)") + (1 _ P(@) <q,<e> (Y®) )
BT op Bu ar
(2.33)
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Finally, we can calculate (2.25) as follows:

T

0Z T T
— _p® 0 (y®
5= 3 ({667, -2 (00 (v)") )
af p,r=1
T ¢ ONT 14 NTcaT ¢
+ Z ( (GG I—P())TB<<I)()(Y()) )w) :2(¢<>(Y<>) GG (I—PU))
p, =1 ap
(2.34)
Consequently, we have:
0Z T
— 290 (y® T — pY
Sy — 2@ (YY) GG' (1-PY) (2.35)
By considering (2.29), we have:
0L _ 9ROGT (I _ P(z)) — 9ROGT — 9ROGTP® (2.36)
oY®
By applying (2.28), we have:
— 2ROGT — 2ROGTYV @ (Y (2.37)
Since ®*) is symmetric:
— 2ROGT — 2ROGTY (@) " (YV) " (2.38)
and again using (2.29), we finally have:
IZ HNaT ¢ N (vOT
O = IROGT — 2R )(R( )) (Y( ))
0L HROGT — 9RO (RO ( £,(x©-00) " (2:39)
e G (15
0 fo(X;00) (RE) (el )
]

Algorithm 2.2 illustrates the DHA method for both training and testing phases. As depicted in
this algorithm, (2.23) is just needed as the first step in the testing phase because the DHA template
G is calculated for this phase based on the training samples. As the second step in the DHA method,
the networks’ parameters (8(”)) must be updated. This thesis employs the back-propagation algorithm
(backprop() function) [56] as well as Lemma 2.6 for this step. In addition, finishing condition is

defined by tackling errors in last three iterations, i.e. the average of the difference between each
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Algorithm 2.2 Deep Hyperalignment (DHA)
Input: Data X, i = 1:5, Regularized parameter ¢, Number of layers C', Number of units U™ for

m = 2:C, HA template G for testing phase (default ()), Learning rate n (default 10~ [42]).
Output: DHA mappings R(¥) and parameters (), HA template G just from training phase
Method:

01. Initialize iteration counter: m < 1 and ) ~ N/(0,1) for £ = 1:S.

02. Construct f,(X?;0()) based on (2.17) and (2.18) by using 8, C, U™ for ¢ = 1:S.

03. IF (G = ()) THEN % The first step of DHA: fixed 0 and calculating G and R®) |
04. Generate A by using (2.20) and (2.22).

05. Calculate G by applying Incremental SVD [55] to A=GIV'.

06. ELSE

07. G=G.

08. END IF

09. Calculate mappings R, ¢ = 1:S by using (2.23).

10. Estimate error of iteration 7, = "5 | 37 ., || f;(X?;0@)RO — £, (X(7);00))RY) i
11. IF ((m > 3)and (Vi > Ym-1 > 'ym,g)) THEN % This is the finishing condition.
12.  Return calculated G, R®), () (¢ = 1:5) related to (m-2)-th iteration.

13. END IF % The second step of DHA: fixed G and R and updating ¥ |
14. VO « backprop <8Z/afg (X(©;00), O(E)) by using (2.25) for £ = 1:8S.

15. Update 0 « 0¥) — V0 for ¢ = 1:S and then m + m + 1

16. SAVE all DHA parameters related to this iteration and GO TO Line 02.

pair correlations of aligned functional activities across subjects (,, for last three iterations). In other
words, DHA will be finished if the error rates in the last three iterations are going to be the worst.
Further, a structure (nonlinear function for componentwise, and numbers of layers and units) for the
deep network can be selected based on the optimum-state error (7,,:) generated by training samples

across different structures (see Experiment Schemes in the supplementary materials).

2.5 Experiments

The empirical studies are reported in this section. Like previous studies [4, 9, 11, 12, 16], we

employ the linear v-SVM algorithms [57] for generating the classification model. Indeed, we use the
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binary v-SVM for datasets with just two categories of stimuli and multi-class v-SVM [4, 5, 57] with
one-vs-all strategy as the multi-class approach. In addition, leave-one-subject-out cross-validation is
utilized for partitioning all datasets except data 107 to the training set and testing set. In dataset 107,
we have used leave-four-subject-out cross-validation because there are 48 subjects and the number
of samples in one subject is not enough for testing set. Different HA methods are employed for
functional aligning, and then the mapped neural activities are used to generate the classification model.
The performances of the proposed methods are compared with the -SVM algorithm as the baseline,
where the features are used after anatomical alignment without applying any hyperalignment mapping.
The performance of other classification techniques will be analyzed in Chapter 5. Furthermore, the
performances of the Regularized HA (RHA) [11] is reported as the basic hyperalignment technique,
where RHA algorithm is optimized by employing novel Generalized CCA approach proposed in [54].
In addition, regularized parameters («, ) in RHA are optimally assigned based on [11]. Moreover,
Linear Discriminant Analysis (LDA) is employed for functional alignment as a supervised alternative
to compare with LDHA. Also, the result of Shared Response Model (SRM) [9, 18] is compared
with the proposed methods. As another deep-learning-based alternative for functional alignment, the
performance of CAE [16] is also compared with the proposed method. Like the original paper [16],
this thesis employs k; = k3 = {5, 10, 15, 20,25}, p = {0.1,0.25,0.5,0.75,0.9}, A = {0.1, 1,5, 10}.
Then, aligned neural activities (by using CAE) are applied to the classification algorithm same as
other HA techniques. This thesis follows the CAE setup to set the same settings in the DHA method.
Consequently, three hidden layers (C' = 5) and the regularized parameters ¢ = {107%,107¢, 1078}
are employed in the DHA method. In addition, the number of units in the intermediate layers are
considered U™ = KV,,.,,, where m = 2:C-1, C'is the number of layers, V,,.,, denotes the number of
aligned features, and K is the number of stimulus categories in each dataset!. Further, three distinctive
activation functions are employed, i.e. Sigmoid (g(x) = 1/1 +exp(—x)), Hyperbolic (g(x) = tanh(x)),
and Rectified Linear Unit or ReLU (g(x) = In(1 + exp(x))). In this thesis, the optimum parameters

for DHA and CAE methods are reported for each dataset. Moreover, all algorithms are implemented

! Although we can use any settings for DHA, we empirically figured out this setting is acceptable to seek an optimum solution.
Indeed, we followed CAE setup in the network structure but used the number of categories (K) rather than a series of parameters. In
the current format of DHA, we just need to set the regularized constant and the nonlinear activation function, while a wide range of

parameters must be set in the CAE.
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by Python 3 on a PC with certain specifications' by authors in order to generate experimental results.

2.5.1 Performance Analysis

Like previous studies [2, 9, 16, 18], numbers of aligned features are considered equal to V,,.,, =
min (V, T) in this section, where this setting can rapidly improve stability of aligned features [9].
Table 2.1 illustrates the benchmarking of different HA methods based on post-aligned classification
accuracy in percentage (%). In data R105 and W105, the best results for CAE are generated by
the following parameters k&, = k3 = 25,p = 0.9, = 5 and for DHA by using ¢ = 107% and
Sigmoid function. In dataset R107 and W107, the best results for CAE are generated by the following
parameters k; = k3 = 10,p = 0.5, A\ = 10 and for DHA by using ¢ = 107% and ReLU function.
In data R232 and W232, the best results for CAE are generated by following parameters k; = k3 =
20,p = 0.9,\ = 5 and for DHA by using ¢ = 10~® and Sigmoid function. In data W0O01, the
best results for CAE are generated by following parameters £y = k3 = 10,p = 0.75,A = 1 and
for DHA by using ¢ = 10~* and ReLU function. In data W002D and WO002P, the best results for
CAE are generated by following parameters &y = k3 = 15,p = 0.5, A\ = 5 and for DHA by using
¢ = 10~* and Sigmoid function. In data W005, the best results for CAE are generated by following
parameters k; = k3 = 20,p = 0.75,\ = 1 and for DHA by using ¢ = 10~® and Hyperbolic
function. In the rest of datasets, DHA with Sigmoid function generates better results in comparison
with other nonlinear activation functions. In data W011D, the best results for CAE are generated by
following parameters k; = k3 = 5,p = 0.1, A = 10 and for DHA by using ¢ = 10~%. In dataset
WO11P, we have used the same parameters except k; = k3 = 10. In dataset WO17, the best results
for CAE are generated by following parameters k; = k3 = 10,p = 0.9, A = 5 and for DHA by
using € = 107%. In data WO52R and W052W, the best results for CAE are generated by following
parameters k; = k3 = 25,p = 0.2, X = 0.1 and for DHA by using ¢ = 10~%. In dataset W102, the
best results for CAE are generated by the following parameters ky = k3 = 5,p = 0.5,A = 5 and
for DHA by using ¢ = 107, In data W116A and W116V, the best results for CAE are generated
by the following parameters k; = k3 = 20,p = 0.25, A\ = 1 and for DHA by using ¢ = 1075, In
dataset W164, the best results for CAE are generated by the following parameters k; = ks = 15,p =
0.24, A = 0.1 and for DHA by using ¢ = 107, In data W231, the best results for CAE are generated

'CPU = Xeon E5-2630, RAM = 64GB, GPU = GeForce TITAN X, OS = KDE Neon 16.04.3, CUDA = 9.0, CuDNN = 7.0.5,
Python = 3.6.5, Pip = 9.0.3, Numpy = 1.14.2, Scipy = 1.0.1, Scikit-Learn = 0.19.1, Tensorflow = 1.7.0, Theano = 0.9.0.
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Table 2.1 Accuracy of HA methods in post-alignment classification (max=std)
Unsupervised Supervised

Datasets v-SVM RHA SRM CAE DHA LDA LDHA

R105 18.214+2.32  24.90+0.04 35.64+0.05 38.06+0.06 43.76£0.23 | 37.49+0.03 52.08+0.11
R107 27.71+£3.86 82.41£0.63 40.514+3.32 45.08+£0.34 45.8740.01 | 38.06£0.32 49.264-0.62
R232 28.12+1.87 31.39£1.20 37.424+0.82 42.75£0.93 45.36+0.07 | 41.09£0.18 47.24+0.52
WO001 26.45+0.31 35.74£0.21 35.00£0.64 39.57+0.33 42.14+0.14 | 32.81£0.94 45.95+0.97
W002D  63.81£2.09 66.72+1.12 73.02£0.60 76.224+0.08 80.04+0.00 | 64.95+0.37 77.28£0.53
WO002P  65.21£1.51 70.55+0.98 71.41£0.71 79.484+0.06 82.56+0.01 | 68.70+1.04 79.29+0.37
WO005 33.594+1.33 42.05+£0.24 50.32+0.79 53.244+0.15 60.32£0.05 | 42.00+£0.10 59.12+0.62
WO011D  42.70£0.90 62.88+1.70 60.60£0.57 65.07£0.13 70.43+0.05 | 67.83+£0.81 71.99+0.16
WO11W  30.85+£0.72 35.61+0.17 37.29+0.78 36.03+0.02 39.05+0.02 | 34.924+0.79 41.22+0.28
w017 20.63+0.94 22.87£0.02 32.83+0.17 48.96+0.14 40.264+0.10 | 43.16£1.03 42.194+1.20
WO52R  52.40+1.42 59.93+0.13 63.27£0.39 70.62+1.04 78.45+0.92 | 67.43+1.5 69.69£0.93
WO052W  54.07£0.82  60.92+0.06 60.07£0.58 69.92+0.03 74.40+0.04 | 65.02+0.81 70.37+£1.08
w102 50.504+0.94 57.56+£0.62 69.44+1.31 79.21+0.72 83.92+0.24 | 57.10+£0.94 68.02+0.69
W105 16.81+£1.77 24.65£0.62 30.064+0.19 35.49+0.26 40.97£0.07 | 33.92+£0.59 44.66+0.37
w107 30.694+2.04 47.42+0.94 49.524+0.95 57.04+0.27 69.32£0.01 | 49.03+£0.71 71.39+0.76
WI116A  59.30£2.72 65.19+0.38 68.00+£0.41 75.294+0.50 85.03+0.05 | 62.39+0.93 61.38+0.85
WI116V  60.16£0.23  62.27+0.4 65.27+£0.83 77.244+0.30 89.92+0.01 | 65.494+0.61 70.35+0.91
W164 53.544+0.53 64.68+0.65 73.82+0.99 70.161+0.18 91.45+0.03 | 69.23+0.22 82.17£0.35
W231 30.62+1.20 58.55+£0.54 62.21+0.88 63.42+0.95 67.15£0.05 | 61.39+£0.62 71.18+0.72
W232 26.79+0.52 40.21£0.73 47.66+0.29 50.37£0.30 55.17+0.06 | 35.14£0.84 67.28+0.93

by the following parameters ky = k3 =

15,p = 0.75,X = 1 and for DHA by using ¢ = 107%. It

is worth noting that our empirical studies show that DHA with Sigmoid activation function mostly

generates acceptable and stable results in comparison with other activation functions. As Table 2.1

demonstrated, the performances of classification analysis without HA method are significantly low

and near to random sampling. Further, while DHA has generated better performance in comparison

with other unsupervised methods, LDHA significantly improves the performance of classification

analysis, when it employs supervision information to align the multi-subject neural activities. Indeed,

DHA illustrates better performance for binary datasets, and LDHA has better accuracy for multi-class

problems.
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Figure 2.3 Runtime Analysis

2.5.2 Runtime Analysis

This section analyzes the runtime of the proposed approaches and other HA methods by em-
ploying ROI-based datasets. As mentioned before, all results in this section are generated by using a
PC with certain specifications. Figure 2.3 illustrates the runtime of the mentioned techniques, where
runtime of other methods are scaled based on the DHA (runtime of DHA is considered as the unit). As
depicted in this figure, CAE generated the worst runtime because it concurrently employs modified
versions of SRM and SearchLight for functional alignment. Further, LDA also includes high time
complexity because of it must apply matrix decomposition for each category separately. By consid-
ering the performance of the DHA method in the previous sections, it generates acceptable runtime
among unsupervised approaches. Further, LDHA has better runtime in comparison with LDA be-
cause it uses the supervised common space and does not need to apply matrix decomposition for each

category separately. It is worth noting that runtime of whole-brain datasets has the same tendency.

2.6 Conclusion

One of the main challenges in fMRI studies is using multi-subject datasets. On the one hand,
the multi-subject analysis is necessary to estimate the validity of the generated results across subjects.
On the other hand, analyzing multi-subject fMRI data requires accurate functional alignment between
neuronal activities of different subjects for improving the performance of the final results. Hyperalign-
ment (HA) is one of the most effective functional alignment methods, which can be formulated as a

CCA problem for aligning neural activities of different subjects to a common space.
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As the first challenge, the HA solution in MVP analysis may not be optimum because it mostly
utilizes the unsupervised CCA techniques for functional alignment. This thesis proposes the Local
Discriminant Hyperalignment (LDHA) as a novel supervised HA solution, which employs the concept
of locality in machine learning for improving the performances of both functional alignment and
MVP analysis. In a nutshell, the proposed method firstly generates two sets for each category of
stimuli, i.e. the set of homogeneous stimuli as within-class neighborhoods and the set of stimuli from
distinct categories as between-class neighborhoods. Then, these two sets are used to provide a better
HA solution, where the correlation between the homogeneous stimuli is maximized, and also the
correlation between different categories of stimuli is near to zero.

As the second contribution, we also extended a deep approach for hyperalignment methods in
order to provide accurate functional alignment in multi-subject fMRI analysis. Deep Hyperalignment
(DHA) can handle fMRI datasets with nonlinearity, high-dimensionality (broad ROI), and a large
number of subjects. Indeed, DHA is parametric and uses rank-m SVD and stochastic gradient descent
for optimization. Therefore, DHA generates low-runtime on large datasets, and DHA does not require
the training data when the functional alignment is computed for a new subject. Further, DHA is not
limited by a restricted fixed representational space because the kernel in DHA is a multi-layer neural
network, which can separately implement any nonlinear function for each subject to transfer the brain
activities to a common space.

Experimental studies on multi-subject fMRI analysis confirm that while DHA method achieves
superior performance to other unsupervised approaches, LDHA can significantly improve the perfor-

mance of analysis, when supervised information is available.
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Chapter 3. Snapshots Analysis and Multi-Region Ensemble Learning

The fMRI techniques visualize the neural activities by measuring the level of oxygenation or
deoxygenation in the human brain, which is called Blood Oxygen Level Dependent (BOLD) sig-
nals. Technically, these signals can be represented as time series for each subject. Most of the MVP
techniques directly analyze these noisy and sparse time series for understanding which patterns are
demonstrated for different stimuli.

The main idea of the proposed method is so simple. Instead of analyzing whole of the time
series, the proposed approach estimates a snapshot of brain image for each stimulus when the level
of using oxygen is maximized. As a result, this method can automatically decrease the sparsity of
brain image. The proposed method is applied in three stages: firstly, snapshots of brain image are
selected by finding local maximums in the smoothed version of the design matrix. Then, features
are generated in three steps, including normalizing to standard space, segmenting the snapshots in
the form of automatically detected anatomical regions, and removing noise by Gaussian smoothing
in the level of ROIs. Finally, we propose two learning approaches. Indeed, extracted features can
be analyzed by using both unsupervised learning and supervised learning. This thesis proposed a
cluster ensemble approach in order to apply unsupervised learning, where similarities or distances
between neural activities can be compared across subjects. As the supervised alternative, we apply
an ensemble classification (i.e., bagging technique) on binary ¢1-regularized SVM classifiers, where
they are created by employing each of neural activities in the level of anatomical regions, i.e., each

snapshot represents neural activities for a unique stimulus.

3.1 Unsupervised Learning

As an unsupervised method, Clustering discovers meaningful patterns in the non-labeled data
sets. There is a wide range of studies, which try to increase the performance of clustering algorithms.
For instance, Zhang et al. introduced a multi-manifold regularized nonnegative matrix factoriza-
tion framework (MMNMF) which can preserve the locally geometrical structure of the manifolds for

multi-view clustering [58]. Anyway, individual clustering algorithms provide different accuracies in
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a complex data set because they generate the clustering results by optimizing a local or global function
instead of natural relations between data points in each data set [59, 60].

Generally, a cluster ensemble has two important steps: Firstly, generating individual clustering
results by using different algorithms and changing the number of their partitions. Then, combining
the primary results and generating the final ensemble. This step is performed by consensus functions
(aggregating mechanism) [59, 61].

The idea that not all partitions are suitable for cooperating to generate the final clustering was
proposed in CES [62]. Instead of combing all achieved individual results, CES can combine a selected
group of best individual results according to consensus metric(s) from the ensemble committee in or-
der to improve the accuracy of final results [62—65]. Fern and Lin developed a method to effectively
select individual clustering results for ensemble and the final decision [62]. Azimi et al. proved that
diversity maximization is not an effective approach in some real-world applications. They explored
that the thresholding procedure must be done based on the complexity and quality of data sets [65]. Jia
et al. proposed SIM for diversity measurement, which works based on the Normalized Mutual Infor-
mation (NMI) [66]. Romano et al. proposed Standardized Mutual Information (SMI) for evaluating
clustering results [67].

Yousefnezhad et al. introduced independency metric instead of quality metric for evaluating the
process of solving a problem in the CES [36, 38]. Alizadeh et al. have concluded the disadvantages
of NMI as a symmetric criterion. They used the APMM! and Maximum (MAX) metrics to measure
diversity and stability, respectively, and suggested a new method for building a co-association matrix
from a subset of base cluster results [63, 64]. Alizadeh et al. introduced Wisdom of Crowds Cluster
Ensemble (WOCCE), which is a novel method base on a theory in social science [64]. Although,
this method can generate high performance and more stable results in comparison with other CES
methods, using a wide range of thresholds and employing different types of clustering algorithms for
generating individual results are two main problems in this method. Alizadeh et al. used A3, which is
based on Shannon’s entropy, for diversity evaluation; and Basic Parameter Independency (BPI), which
uses initialized values of individual clustering algorithms such as random seeds in the first iterative
of k-means, for independency evaluation. In addition, they introduced the feedback mechanism for

generating the high-quality results [64].

! Alizadeh-Parvin-Moshki-Minaei
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There are some cluster ensemble approaches focused on rest-mode fMRI analysis. Baumgart-
ner et al. introduced a resampling technique to validate the results of exploratory fuzzy clustering
analysis [68]. Sato et al. introduced a novel approach called cluster Granger analysis (CGA) to study
connectivity between ROIs. The main aim of this method was to employ multiple eigen—time series
in each ROI to avoid temporal information loss during identification of Granger causality [69]. Bellec
et al. developed a generic statistical framework to quantify the stability of such resting-state networks
(RSNs), which was implemented with k-means clustering [70]. Galdi et al. evaluated the applicabil-
ity of clustering based techniques to the problem of feature extraction in resting state fMRI analysis
[71].

As a graph based clustering methods, spectral clustering generates high-performance results
when it is applied to different applications; i.e. from image segmentation to community detection
arena. Kuo et al. introduced a new method for automating the process of Laplacian creation in the
medical applications; especially for fMRI segmentation where this method used standard Laplacians
perform poorly [72]. Chen et al. proposed a clustering algorithm which is based graph clustering and
optimizing an appropriate weighted objective, where larger weights are given to observations (edge
or no-edge between a pair of nodes) with lower uncertainty [12]. Gao et al. introduced a graph-based
consensus maximization (BGCM) method for combining multiple supervised and unsupervised mod-
els. This method consolidated a classification solution by maximizing the consensus among both

supervised predictions and unsupervised constraints [73].

3.2 Supervised Learning

There are three different types of studies for decoding stimuli in the human brain. Pioneer studies
just focused on recognizing special regions of the human brain, such as inanimate objects [74], faces
[75], visually illustration of words [76], body parts [77], and visual objects [78]. Although they
proved that different stimuli can provide distinctive responses in the brain regions, they cannot find
the deterministic locations (or patterns) related to each category of stimuli.

The next group of studies developed correlation techniques in order to understand the similarity
(or difference) between distinctive stimuli. Haxby et al. employed brain patterns located in Fusiform
Face Area (FFA) and Parahippocampal Place Area (PPA) in order to analyze correlations between

different categories of visual stimuli, i.e. gray-scale images of faces, houses, cats, bottles, scissors,
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shoes, chairs, and scrambled (nonsense) photos [78]. Kamitani and Tong studied the correlations of
low-level visual features in the visual cortex (V1-V4) [79]. In similar studies, Haynes et al. analyzed
distinctive mental states [80] and more abstract brain patterns such as intentions [81]. Rice et al.
proved that not only the brain responses are different based on the categories of the stimuli but also
they are correlated based on different properties of the stimuli. They extracted the properties of visual
stimuli (photos of objects) and calculated the correlations between these properties and the brain
responses. They separately reported the correlation matrices for different human faces and different
objects (houses, chairs, etc.) [82].

The last group of studies proposed the MVPA techniques for predicting the category of visual
stimuli. Cox et al. utilized linear and non-linear versions of Support Vector Machine (SVM) algorithm
[83]. In order to decode the brain patterns, some studies [21, 22, 84] employed classical feature se-
lection (ranking) techniques, such as Principal Component Analysis (PCA) [84], Linear Discriminant
Analysis (LDA) [21], or Independent Component Analysis (ICA) [22], that these method are mostly
used for analyzing rest-state fMRI datasets. Recent studies proved that not only these techniques
cannot provide stable performance in the task-based fMRI datasets [9, 16] but also they had spatial
locality issue, especially when they were used for whole brain functional analysis [16]. Norman et
al. argued for using SVM and Gaussian Naive Bayes classifiers [85]. Kay et al. studied decoded
orientation, position and object category from the brain activities in visual cortex [86]. Mitchell et
al. introduced a new method in order to predict the brain activities associated with the meanings of
nouns [87]. Miyawaki et al. utilized a combination of multiscale local image decoders in order to re-
construct the visual images from the brain activities [88]. In order to generalize the testing procedure
for task-based fMRI datasets, Kriegeskorte et al. proved that the data in testing must have no role in
the procedure of generating an MVPA model [89].

There are also some studies that focused on sparse learning techniques. Yamashita et al. devel-
oped Sparse Logistic Regression (SLR) in order to improve the performance of classification models
[90]. Carroll et al. employed the Elastic Net for prediction and interpretation of distributed neural
activity with sparse models [91]. Varoquaux et al. proposed a small-sample brain mapping by using
sparse recovery on spatially correlated designs with randomization and clustering. Their method is ap-
plied on small sets of brain patterns for distinguishing different categories based on a one-versus-one

strategy [92].
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As the first modern approaches for decoding visual stimuli, Anderson and Oates applied non-
linear Artificial Neural Network (ANN) on brain responses [23]. McMenamin et al. studied sub-
systems underlie Abstract-Category (AC) recognition and priming of objects (e.g., cat, piano) and
Specific-Exemplar (SE) recognition and priming of objects (e.g., a calico cat, a different calico cat,
a grand piano, etc.). Technically, they applied SVM on manually selected ROIs in the human brain
for generating the visual stimuli predictors [25]. Mohr et al. compared four different classification
methods, i.e. L1/L2 regularized SVM, the Elastic Net, and the Graph Net, for predicting different
responses in the human brain. They show that L1-regularization can improve classification perfor-
mance while simultaneously providing highly specific and interpretable discriminative activation pat-
terns [24]. Osher et al. proposed a network (graph) based approach by using anatomical regions of
the human brain for representing and classifying the different visual stimuli responses (faces, objects,

bodies, scenes) [93].

3.3 Snapshots Selection

fMRI time series collected from a subject can be denoted by F € R**™, where ¢ is the number
of time samples, and m denotes the number of voxels. Same as previous studies [23-25, 78], F can

be formulated by a linear model as follows:
F=D@P) +¢ (3.1)

where D € R"? denotes the design matrix, ¢ is the noise (error of estimation), E € R™*P denotes the
sets of correlations (estimated regressors) between voxels. The design matrix can be denoted by D =
{d;,ds,...,d;,...,d,}, and the sets of correlations can be defined by B = {ﬁl,i}\% B ,B\p}.
Here, d; € R and ﬁ, € R™ are the column of design matrix and the set of correlations for i-th
category, respectively. p is also the number of all categories in the experiment F. In fact, each category
(independent tasks) contains a set of homogeneous visual stimuli. In addition, the nonzero voxels in ﬁz
represents the location of all active voxels for the i-th category [94]. As an example, imagine during
a unique session for recognizing visual stimuli, if a subject watches 4 photos of cats and 3 photos
of houses, then the design matrix contains two columns; and there are also two sets of correlations
between voxels, i.e. one for watching cats and another for watching houses. Indeed, the final goal of

this section is extracting 7 snapshots of the brain image for the 7 stimuli in this example.
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Figure 3.1 Examples of smoothed design matrices

The design matrix can be classically calculated by convolution of time samples (or onsets: S =
{S1,S2,...,S;,...,S,}) and E as the Hemodynamic Response Function (HRF) signal, d; = S; *
E — D = S« H[78, 94]. In addition, there is a wide range of solutions for estimating i3\ values.
This thesis uses the classical method Generalized Least Squares (GLS) [94] for estimating the ii values

where X is the covariance matrix of the noise (Var(e) = Xo? # Io?):
p=((D='D) 'D'E'F) (32)

It is worth noting that we will present a new deep approach for estimating (3.2) in Chapter 4 but we
use the classical GLS approach in this section. Here, each local maximum in d; represents a location
where the level of using oxygen is so high. In other words, the stimulus happens in that location. Since
d; mostly contains small spikes (especially for event-related experiments), it cannot be directly used
for finding these local maximums. Therefore, this thesis employs a Gaussian kernel for smoothing

the d; signal. Now, the interval G is defined as follows for generating the kernel:

o2

G= {exp (%) ‘ geZand —2[og] <g< Q[JG—‘} (3.3)

G

where o > 0 denotes a positive real number; [.] is the ceiling function; and Z denotes the set of
integer numbers. Gaussian kernel is also defined by normalizing G as follows:
G
Zj /g\j

where ) i g; is the sum of all elements in the interval G. This section defines the smoothed version

G:

(3.4)

of the design matrix by applying the convolution of the Gaussian kernel G and each column of the
design matrix (d;) as follows:

¢i=d; xG=(S;*E)*G (3.5)
® = {¢1,¢2,...,0p} (3.6)
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where ¢; = f (S;, &, G). Since the level of smoothness in ®@ is related to the positive value in (3.3),
oc = 1 is heuristically defined to generate the optimum level of smoothness in the design matrix.
The general assumption here is the 0 < o4 < 1 can create design matrix, which is sensitive to small
spikes. Further, o > 1 can rapidly increase the level of smoothness, and remove some weak local
maximums, especially in the event-related fMRI datasets. Figure 3.1 illustrates two examples of the
smoothed columns in the design matrix. The local maximum points in the ¢; can be calculated as

follows:

oS, 0S;S;

. 2.
Si = {arggbi 99: _ 0 and 09 > O} (3.7)
S;

where S7 C S, denotes the set of time points for all local maximums in ¢;. The sets of maximum

points for all categories can be denoted as follows:
S*={S},85,...,S;,...,8,;} (3.8)

As mentioned before, the fMRI time series can be also denoted by FT = {f],f5,... f},... I},
where fJT € R™ is all voxels of fMRI dataset in the j-th time point. Now, the set of snapshots can be

formulated as follows:

¥={f|flcFandjcS}={Y1 V... ... 9} €R™ (3.9)

where ¢ is the number of snapshots in the brain image F, and y;, € R™ denotes the snapshot for k-th
stimulus. These selected snapshots are employed in next section for extracting features of the neural
activities. Algorithm 3.3 illustrates the whole of procedure for generating the snapshots from the time

series F.

3.4 Multi-Region Feature Extraction

In this section, the feature extraction is applied in three steps, i.e., normalizing snapshots to
standard space, segmenting the snapshots in the form of automatically detected regions, and removing
noise by Gaussian smoothing in the level of each region. As mentioned before, normalizing brain
image to the standard space can increase the time and space complexities and decrease the robustness
of fMRI analysis, especially in voxel-based methods [1]. On the one hand, most of the previous

studies [24-26, 78] preferred to use original datasets instead of the standard version because of the
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Algorithm 3.3 The Snapshots Selection Algorithm
Input: fMRI time series F, time points (onsets) S, HRF signal H, , Gaussian Parameter o:

Output: Snapshots W, the sets of correlations E:
Method:

1. Generating the design matrix D = S * H.

. Defining F = DB +e.

. Calculating ﬁ by using (3.2).

. Generating Gaussian kernel by (3.4).

. Smoothing the design matrix by (3.5).

. Finding locations of the snapshots by (3.8).

~N N B W

. Calculating snapshots v by using (3.9).

mentioned problem. On the other hand, this mapping can provide a normalized view for combing
homogeneous datasets. As a result, it can significantly reduce the cost of brain studies and rapidly
increase the chance of understanding how the brain works. Employing brain snapshots rather than
analyzing whole of data can solve the normalization problem.

Normalization can be formulated as a mapping problem. Indeed, brain snapshots are mapped
from R™ space to the standard space R" by using a transformation matrix for each snapshot. There
is also another trick for improving the performance of this procedure. Since the set EZ denotes the
locations of all active voxels for the i-th category, it represents the brain mask for that category and
can be used for generating the transform matrix related to all snapshots belong to that category. For
instance, in the example of the previous section, instead of calculating 7 transform matrices for 7
stimuli, we calculate 2 matrices, including one for the category of cats and the second one for the

category of houses. This mapping can be denoted as follows:
T;: B eR” — B, eR” (3.10)

where T, € R™*™ denotes the transform matrix, B; = ((Bi)TTi)T is the set of correlations in the
standard space for i-th category. This section utilizes the FLIRT algorithm [95] for calculating the

transform matrix, which minimizes the following objective function:

T, = argmin(N M I(B;, Ref)) (3.11)
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where the function N M denotes the Normalized Mutual Information between two images [95],
and Ref € R" is the reference image in the standard space. This image must contain the struc-
tures of the human brain, i.e. white matter, gray matter, and CSF. These structures can improve
the performance of mapping between the brain mask in the selected snapshot and the general form
of a standard brain. In addition, the sets of correlations for all of categories in the standard space
is denoted by p = {B1,P2,...,Bi,-... By} € R™P, and the sets of transform matrices is defined
by T = {Ty,Ty,...,T;,...,T,}. Now, the Select function is denoted as follows to find suitable

transform matrix for each snapshot:

(T5,B;) = Select(y;, T,B) = {(T;,p:;) | T, € T,B; € B,

v, is belonged to the i — th category —> y; x B; o< T;}

(3.12)

where T} € R™*" and B} € R"™ are the transform matrix and the set of correlations related to the j-th
snapshot, respectively. Based on (3.12), each normalized snapshot in the standard space is defined as

follows:
T T

where y; € R" is the j-th snapshot in the standard space. Further, all snapshots in the standard space
can be defined by ¥ = {w1,yo,...,y;,...,y,} € R"*% As mentioned before, nonzero values in
the correlation sets depict the location of the active voxels. Based on (3.12), this section uses these

correlation sets as weights for each snapshot as follows:

@, =y, o (3.14)

where o denotes Hadamard product, and @; € R" is the j-th modified snapshot, where the values of
deactivated voxels (and also deactivated anatomical regions) are zero in this snapshot. As the final
product of normalization procedure, the set of snapshots can be denoted by @ = {01,095, ...,0,,...,0,}.
Further, each snapshot can be defined in the voxel level as follows, where 92‘? is the k-th voxel of j-th
snapshot:

0;=[0,,05,....0" .. 0] (3.15)
The next step is segmenting the snapshots in the form of automatically detected regions. Now,

consider anatomical atlas A € R™" = {A;, Ay, ..., Ay, ..., AL}, where N2 {A/} = 0, UL {A/} =
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Figure 3.2 Examples of smoothed anatomical regions (X(;,¢)) in the voxel level

A, and L is the number of all regions in the anatomical atlas. Here, A, denotes the set of voxel
locations in the snapshots for the ¢-th anatomical region. A segmented snapshot based on the /-th

region can be denoted as follows:
n=1{0)10c @ andk € A/} (3.16)

where @ ;) C O; is the subset of voxels in the snapshot @;, which these voxels are belonged to the
the /-th anatomical region. In addition, the sets of all anatomical regions in the j-th snapshot can
be defined by @; = {O(;,1)) UGz U--- UGy U---UB; )} = (05,02 ... 6% .. 07| The

automatically detected active regions can be also defined as follows:

Q) = {®(j,g)|®(j,@ C ©; and Z 10F, )| # 0} (3.17)

(7 0 €930

where Zek kjy €)| represents sum of all voxels in the @; ». Based on (3.17), active regions in

0€9G.0 10
the j-th snapshot can be defined as the regions with non-zero voxels because values of all deactivated
voxels are changed to zero by using (3.14). The last step is removing noise by Gaussian smoothing
in the level of anatomical regions. As the first step, a Gaussian kernel for each anatomical region can

be defined as follows:

2
oy = Ve
5NZ log N,
2
Vg:{exp (2—;) VeZand —2[0)] < gz(aﬂ} (3.18)
v,

VEZ — =~
Zjvj

where N, denotes the number of voxels in (-th region, and ) V; is sum of all values in the interval

V. Indeed, the level of smoothness is related to o, which is heuristically calculated for each region
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Algorithm 3.4 Multi-Region Feature Extraction Algorithm

Input: Snapshots ¥, correlations ﬁ, Ref image, Atlas A:
Output: Smoothed snapshots X:

Method:

1. For each ﬁi, calculate transform matrix by (3.11).

. Mapping y; to standard space by T} and (3.13).

. Detecting active voxels for each snapshot by (3.14).

. Segmenting each snapshot by (3.16).

. Finding active regions for each snapshot by (3.17).

. Generating Gaussian kernel by (3.18).

~N N L AW

. Smoothing snapshots by (3.19).

based on the number of voxels in that region. As the second step, the smoothed version of the j-th
snapshot can be defined as follows:
V0=L1...L2— XU =@, * Vy,
(3.19)
) CUERD CEDNNNS CUNNS CE )
where @ ;) € O7 is the (-th active region of j-th snapshot, and * denotes the convolution between
the active region and the Gaussian kernel related to that region. Further, L1 and L2 are the first and
the last active regions in the snapshot, where 1 < L1 < L2 < L. Figure 3.2 demonstrates two
examples of smoothed anatomical regions in the voxel level. All smoothed snapshots can be defined
by X = {X1) X® X0 . X@} Moreover, Algorithm 3.4 shows the whole of procedure for

extracting features.

3.5 Weighted Spectral Cluster Ensemble (WSCE)

In this section, we develop an unsupervised cluster ensemble approach to compare the similarities
or distances among neural activities of different categories of stimuli. As Figure 3.3 depicted, the
extracted neural activities belong to each anatomical region (XU9), j = 1:¢) are employed to apply
a base clustering algorithm. Then, the final partitioning is generated by using the results of these
algorithms. Indeed, the proposed method firstly generates 7t € {1,...,p}%, ¢ € [L1, L2] as the

base clustering results and then combines these results to partition neural activities to p categories of
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Figure 3.3 Weighted Spectral Cluster Ensemble (WSCE)

stimuli. Here, 7 is the ¢-th base result related to the ¢-th anatomical region in the reference set

(I = {7}, ¢ € [L1, L2)).

3.5.1 Two Kernels Spectral Clustering (TKSC)

Like other spectral methods, this section calculates the non-symmetric distances (adjacency)

matrix of the neural activities as follows: [96, 97].

ifi ]
ifi=j

_||X(u) X0 Il
A(g) _ exrp A
/L"j -

(3.20)

o

where || X9 — XU49||, will be calculated by Euclidean distance. Indeed, (3.20) can optimize the
memory usage [96, 97]. The scaling parameter N controls how rapidly affinity AEKJ) falls off with
the distance between the data points. This thesis uses Ng et al. method for estimating this value
automatically (count non-zero values in each columns of the distance matrix) [96, 97].

This section introduces Two Kernels Spectral Clustering (TKSC) algorithm, which can gener-
ate all base results (IT). Unlike normal clustering algorithms, which just generate a partition as the
clustering result, the TKSC algorithm generates two independent consequences, which are called Par-
titional result and Modular result, for each of the individual clustering results by using two kernels
() = {%Efil, %](\?O}). The Partitional result (7?;{)4) is a partitioning of data points same as the result
of other clustering methods; and the Modular result (%](\?O) is a network of data points, which can be
represented by a graph. This thesis uses the Modular result as a reference for evaluating the diversity
of generated partition by using community detection methods [98, 99]. Furthermore, the kernel in the

TKSC refers to Laplacian equation in spectral methods because it transforms data points in the new
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environment, especially linear environment for non-linear datasets.

Partitional Kernel: This section uses the following equation for generating Partitional result:
~ 1/2 ~ 1/2
AD —1- <A<e>> AO (Aw)) (3.21)

where I is the identity matrix [96]; the diagonal matrix A® is calculated as follows:

~ —1/2

AO — (A“)lq + 10*10) (3.22)
CE

- ALY if1 =

N S A A (3.23)
0 ifi# ]

where ones matrix 1, € 199, Now, the eigendecomposition is performed for calculating eigenvectors
of AV,
E®) = eigens <A§fz4> (3.24)

where the matrix E() is the eigenvectors of Partitional Kernel. The coefficient E® will be defined

for normalizing the matrix E(*):

1
(ZE X E,?) +107% (3.25)

where Eg) shows the i-th row and j-th column of the matrix E(); and 10~% is used for omitting
the effect of zeros in the matrix E(). Also, ¢ denotes the number of snapshots (E“) € R?). The

normalized matrix of eigenvectors will be calculated as follows:
e = eEY (3.26)

where e A(K)

and e ) denote the cell located in the i-th row and j-th column of matrices E® and E©
respectively; and EZ(-K is the i-th row of the vector E(¥) which is used for normalization. The Partitional
result of TKSC will be calculated by applying the simple k-means [36—-38] on the matrix E® as
follows:

Ng% = kmeans(EY, p) (3.27)
Modular Kernel: This section uses the following equation for generating Modular result:

~ 1 ~
70 = A A0 (3.28)

max (Zw _ A(f))
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Algorithm 3.5 Two Kernels Spectral Clustering (TKSC)
Input: Neural activities X**), Number of clusters p

Output: Partitional result %gl‘, Modular result 7?5\?0
Method:

1.  Generate similarity matrix A} by using X**) on (3.20).
Generate diagonal matrix A®) by using A,

A, by applying A® and A®) on (3.21).

Generate the matrix E(¥) as eigenvectors of AE?A.

0)

Generate Ei ;/ as normalized E“ by using (3.26).

Generate 7., by applying A®) and A on (3.28).
7~r§f24 — kmeans(E® p)

Return %53{)4 and %1(\?0

e T

where the function max finds the biggest value in the matrix A) — A®). Here, we consider 77, is

an adjacency matrix of graph representation of the neural activities belogn to /-th region. Further, all
values in the matrix AS\?O, which is called Modular result, are between zero and one. Algorithm 3.5

shows the pseudo code of the TKSC method.

3.5.2 Weighted Evidence Accumulation Clustering (WEAC)

Tracing errors can control similarity and repetition of specific answers in clustering problems.
There is a wide range of metrics, which are based on Shannon’s entropy[37, 38], for evaluating the
diversity of individual results in the ensemble methods, such as MI [59], NMI [61], APMM [63],
MAX [64], and SMI [67]. Shannon’s entropy uses the logarithm of the probability of individual
results for evaluating the diversity, but there is no mathematical proof that all real-world datasets
have logarithmic behavior. In community detection [98, 99], Modularity, which is based on Expected
Value, was proposed for solving this problem. Recently, many papers proved that modularity [98, 99]
could estimate the diversity on graph-based datasets such as brain networks better than entropy-based
methods. Unfortunately, modularity can measure the diversity only for graph data [98]. This thesis
proposes TKSC, which can generate a graph based result, called Modular result, for any types of
datasets in the real-world application. Since modularity was defined for community detection area,

this thesis introduces a redefined version of modularity metric for general clustering problems, which
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is called Normalized Modularity (N M). It is used for evaluating the diversity of the individual results
based on the Modular result of the TKSC as follows:

_ SN S G OM)IMY) | pp
O =NM(P.M) =+ ISM, ZJ [F(MU) 75 M]] (1-T(P;, —P;))  (3.29)
ra=d X0 (3.30)

1 Otherwise
where P is a Partitional result, M denotes a Modular results, (M) shows the degree of /-th node
in the graph of matrix M (how many rows contains non-zero value in the columns /), I'(x) is zero if
and only if vector X is a zero vector. Indeed, we must calculate O = NM (7\%,, 7)), ¢ € [L1, L2]
for all active regions, where it is always 0 < NM < 1. Now, we develop Weighted Evidence
Accumulation Clustering (WEAC) for generating the co-association matrix:

01 0” + 0 (3.31)
2q(L2 — L1) :

Cm'::

(0)

where O, illustrates the Normalized Modularity related to /-th anatomical region and i-¢h snapshot.

Further, the final co-association matrix, which is a symmetric matrix, will be generated as follows:

Cii Ci2 --- Cig
Cor Ca2 -.. Qg

¢ = WEAC(I) = (3.32)

Gr G2 Gj Gy

Cﬁl <§2 CI Cﬁq

where ¢ is the number of the snapshots; and ¢;; denotes the final aggregation for i-th and j-t/ stimuli.
Algorithm 3.6 illustrates the pseudo code of the proposed method. In this algorithm, X is the neural
activities; p is the number of clusters in the final result (i.e., number of stimuli categories). A Euclidean
metric also measures the distances. The TKSC function builds the partitions and modules of individual
results, and NM function evaluates these results. Then, the evaluated results will be added to reference
set (IT). The Average-Linkage function creates the final ensemble according to the average linkage

method [36-38, 63, 64].
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Algorithm 3.6 Weighted Spectral Cluster Ensemble (WSCE)
Input: Data points X, Number of clusters p

Output: final result P,
Method:
FOR (¢ = L1:L2
[Tk Tato] = TKSC (X9, p)
0 = NM(%gAa 771(\?0)

END FOR

3

4

5

6. Add %ﬁf A> WA?O, and O to the reference set I.
7

8. Generate co-association matrix £ = WEAC(I)
9

Pina = Average-Linkage(§)

3.6 Multi-Region Ensemble Learning (MREL)

As a classical classification method, Support Vector Machine (SVM) [100, 101] decreases the
operating risk and can find an optimized solution by maximizing the margin of error. As aresult, it can
mostly generate better performance in comparison with other methods, especially for binary classifi-
cation problems. Therefore, SVM is used in the wide range of studies for creating predictive models
[24-26, 78]. As Figure 3.4 depicted, the final goal of this section is employing the ¢1-regularization
SVM [100] method for creating binary classification at the level of anatomical region, and then com-
bining these classifiers by using the Bagging algorithm [102] for generating the final predictive model.

As mentioned before, fMRI time series for a subject can be denoted by F. Since fMRI experiment
is mostly multi-subject, this thesis denotes F,,, = 1:U as fMRI time series (sessions) for all subjects,
where U is the number of subjects. In addition, 7 = Zgzl ., 1s defined as the number of all snapshots
in a unique fMRI experiment. Here ¢, is the number of snapshots for the u-th subject. Further, the
original ground truth (the title of stimuli such that cats, houses, etc.) for all snapshots is denoted by
Y = {v1.92.-..,9j,...y-}, where y; denotes the ground truth for j-th snapshot. Since this thesis
uses a one-versus-all strategy, we can consider that y; € {—1,+1}. This thesis applies following

objective function on automatically detected active regions as the ¢1-regularization SVM method for
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Figure 3.4 Multi-Region Ensemble Learning (MREL)

creating binary classification in the level of ROIs [24, 100]:

T

e min O ) max(0,1—y;X(0Wio) + [|Well (3.33)
j=1

where C' > 0 is a real positive number, X, s and y; denote the voxel values of /-t region and the
class label of j-th snapshot, respectively. Further, W, = (W1, W), ..., Wi, ..., W] is
the generated weights for predicting MVP model based on the ¢-th active region. Here, ||W||; =
max ), |W;;|. The classifier for ¢-th region is also denoted by 7, where all of these classifiers can
bé defined by n = {nr1,...,7,...n02}. The final step in the proposed method is combining all
classifiers (1) by Bagging [102] algorithm for generating the MVP final predictive model. Indeed,
Bagging method uses the average of predicted results in (3.33) for generating the final result (7)inq =
L2

> ver1me) [102, 103]. Algorithm 3.7 shows the whole of procedure in the proposed method by using

Leave-One-Out (LOO) cross-validation in the subject level.

3.7 Experiments

The empirical studies will be presented in this section. We employ the Montreal Neurological
Institute (MNI) 152 T1 4mm [44, 45] as the reference image (Ref) in (3.11) for mapping the extracted
snapshots to the standard space (W, — w,). The size of this image in 3D scale is X = 46,Y =
55, Z = 46. Moreover, the Talairach Atlas [43] (including L = 1105 regions) in the standard space

is used in (3.17) for extracting features. Further, all of algorithms are implemented in Python 3 on a
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Algorithm 3.7 Multi-Region Ensemble Learning (MREL) by using LOO cross validation
Input: fMRI time series F,,u = 1:U, Onsets S, u = 1:U, HRF signal H, Gaussian Parameter o

(default o = 1):
Output: MVP performance (ACC, AUC)

Method:

0l. FORu = 1:U

02. Create train set Fp, = {F;|j = 1:U, j # u}.

03. Extract snapshots of Fr,. by using Algorithm 3.3.

04. Generate features of Fr,. by using Algorithm 3.4.
05. Train binary classifiers 7 by using Fr, and (3.33).

06. Generate final predictor (17inq) by using Bagging.
07. Consider F,, as test set.

08. Extract snapshots for F, by using Algorithm 3.3.
09. Generate features for F,, by using Algorithm 3.4.

10. Apply test set on the final predictor (1 fina)-

11. Calculate performance of F,, (ACC;, AUC;) [103].
12. END FOR

13. Accuracy: [103]: ACC = 25]:1 ACC;/U.

14. AUC [103]: AUC = Y7, AUC;/U.

PC with certain specifications! by authors in order to generate experimental results.

3.7.1 Correlation Analysis

The correlations of the extracted features will be compared with the correlations of the original
voxels in this section. Previous studies illustrated that patterns of different Abstract-Categories (ACs)
[25], which is extracted from a suitable feature representation, must provide distinctive correlation
values [25, 82]. Therefore, the main assumption in this section is that better feature representation
(extraction) can improve the correlation analysis, where the correlation between different categories of

visual stimuli must be significantly smaller than the correlation between stimuli belonged to the same

'DEL , CPU = Intel Xeon E5-2630 v3 (8x2.4 GHz), RAM = 64GB, OS = KDE Neon 16.04.4

50



Nanjing University of Aeronautics and Astronautics

c e 1.00
e 1.00 onsonant 0.75
C.halr 081 Scrambled 0.50
Scissor 0.62 0.25
Bottle 044 Objects 0' o1
sh .
C(: / 025 Words 0.24
Scram 0.06 k g E § -0.49
House -0.13 E g E g ’
BEE3285 8 0.32 s £ - o7
T o o g o -0.51 8 © e 099
(A) '

G
El

Figure 3.5 Correlation analysis for R105 dataset (A) in the voxel level, (B) feature level, for R107 dataset (C) in

the voxel level, (D) feature level.

category. In order to provide a better perspective, the extracted features are compared by considering
two different levels. At the first level, the feature space is compared with the whole of raw voxels
in the original space, where this comparison analyzes the correlation between whole-brain data and
automatically detected anatomical regions. At the second level, the correlation values among different
ACs are compared in the feature space that it shows how much the feature space is well-designed.

This section presents two examples to compare the effect of using snapshots rather than em-
ploying all time points. Figure 3.5 A, and C respectively demonstrate correlation matrix at the voxel
level for the datasets R105, and R107. Further, Figure 3.5 B, and D respectively illustrate the corre-
lation matrix in the feature level for the datasets R105, and R107. Since neural activities are sparse,
high-dimensional and noisy in voxel level, it is so hard to discriminate between different categories
in Figure 3.5 A, and C. By contrast, Figure 3.5 B, and D provided distinctive and informative repre-
sentation when the proposed method used the extracted features.

The correlation between different ACs can also be meaningful in the feature space. In R105 and
R107, the scramble (nonsense) stimuli have a low correlation in comparison with sensible categories.
As another example in R105, human faces are mostly correlated to the photos of cats and houses in
comparison with other objects. Another interesting example is the correlation between meaningful
stimuli (words and objects) and nonsense stimuli (scrambles and consonants) in R107, where the
meaningful stimuli are highly correlated, and their correlations with nonsense stimuli are negative.
Indeed, the noisy and sparse raw voxels are not suitable (wise) in order to train a high-performance
cognitive model. It is worth noting that we have the same tendency for the reset of datasets. In Chapter

4, we will compare all datasets together.
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Figure 3.6 Unsupervised Analysis of different neural activities by using WSCE
3.7.2  Unsupervised Analysis

This section analyzes the neural activities by using unsupervised clustering techniques. Figure
3.6 compares unlabeled neural activities by using NMI metric. In this figure, the results of WCES
are compared with Spectral clustering [96] as a baseline. Further, the performance of Standardized
Mutual Information (SMI) is reported as an NMI-based ensemble technique [67]. As a graph-based
ensemble approach, we compare the proposed method with a graph-based consensus maximization
(BGCM) method [73]. Here, the Gaussian parameter for smoothing the design matrix is considered
oc = 1. Moreover, we apply the neural activities of different snapshots to these methods and then
calculate the average of within-cluster similarity by using NMI metric. As Figure 3.6 depicted, WSCE
generates better performance in comparison with other methods because it uses the anatomical features
of neural activities to improve the clustering analysis. Indeed, WSCE can demonstrate that how much
the neural activities in an Abstract-Category (AC) are similar to each other. In Chapter 4, we develop
new methods in order to compare between-class similarities or differences by employing supervision

information.

3.7.3 Supervised Analysis

The performance of MREL method is compared with prevalent feature selection algorithms,
which were proposed for decoding the distinctive stimuli in the human brain. We first compared the

proposed approach with /1-SVM as a baseline, where the raw neural activities are directly applied
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to this algorithm. Further, our method is compared with Principal Component Analysis (PCA) and
Independent Component Analysis (ICA) as two unsupervised approaches for feature selection. As
a supervised alternative, we also report the performance of Linear Discriminant Analysis (LDA) is
indicated. Here, we firstly select snapshots by using the proposed method and then using the same
number of time points in the mentioned methods in order to select features. This section compares the
performance of the mentioned methods as well as the proposed method by using leave-one-subject-out
cross-validation for all dataset except R107 that uses leave-four-subject-out cross-validation. Further,
the Gaussian parameter for smoothing the design matrix is considered o = 1. The effect of different
values of this parameter on the performance of the proposed method will be discussed in the next
selection. Table 3.1 illustrates the accuracy of classification analysis by using these feature selection
techniques, where the proposed method generates better performance in comparison with other feature
selection techniques. Indeed, our method uses snapshots with the higher probability of representing

neural activities. Thus, it can present better discrimination to apply a classification analysis.

3.7.4 Parameters Analysis

In this section, the effect of different parameters on the performance of the proposed feature
selection method will be analyzed. As the first parameter, o in (3.3) is heuristically defined to
change the level of smoothness in the design matrix. The general assumption here is the 0 < o < 1
can create design matrix, which is sensitive to small spikes. As a result, the detected local maximums
and also the number of snapshots will be more than the real number. Moreover, o5 > 1 can rapidly
increase the level of smoothness, and also can remove some weak local maximums, especially in the
event-related fMRI datasets. Figure 3.7.A illustrates the effect of different o values on the number
of wrongs detected snapshots in the region-based datasets. As depicted in this figure, the o5 = 1
generated better results in comparison with other values. This is the main reason that this paper uses
o¢ = 1 as the default value in the empirical studies.

The next parameter that can affect the performance of the proposed method is the distance metric
in the objective function (3.11) for mapping functional snapshots to the standard space. Figure 3.7.B
and C demonstrate two examples of the error of registration (normalization) in the detected snapshots.
Here, gray parts show the anatomical atlas, the colored parts (yellow and blue) define the functional

activities, and also the red rectangles illustrate the error areas after registration. Indeed, these errors

53



Functional Alignment and Feature Learning with Neuroimaging Data

Table 3.1 Accuracy of classification analysis for evaluating different feature selection techniques (max-+tstd)
Datasets {1-SVM PCA ICA LDA MREL
R105 16.72+1.89 19.04£0.34 21.764+0.30 35.20+0.38 34.99£0.54
R107 26.394+2.60 28.06+£0.45 30.47+0.07 32.04+0.07 40.27+0.93
R232 30.65+0.79 33.34+1.43 36.45+0.28 40.69+0.16 52.49+0.07
w001 25.47+0.36 29.39£0.14 28.544+0.17 33.07+£0.96 37.1940.63
W002D  61.69£0.86 62.41+0.63 65.61£0.13 66.75+0.73 67.84+0.76
WO002P  64.98+0.15 67.68+0.36 67.34+£0.72 70.67£0.53 73.2540.12
WO005 32.804+0.93 35.59+0.84 38.5940.33 40.19+0.73 45.16+£0.59
W011D  41.26£0.13  63.21+0.13 60.08+£0.71 66.08+0.22 68.81+0.43
WO011W  31.37£0.54 31.974+0.02 32.62+0.63 33.20+0.51 35.34+0.68
WO017 22.31£0.72  30.27£0.11 30.23+£0.50 40.954+0.65 45.69+0.09
WO052R  54.83£0.17 63.76+0.98 62.32+0.81 68.194+0.13 70.90+0.51
WO052W  53.4240.99 60.01+:0.90 58.83+£0.46 63.84+0.16 67.76:+0.30
w102 52.33+0.46 53.93+0.45 54.91+0.30 58.19+0.11 71.93£0.25
W105 17.72£0.10 22.62+0.05 22.654+0.93 38.68+0.08 37.30+0.48
w107 32.244+1.61 32.58+0.76 38.424+0.89 45.73+0.82 51.16%0.87
WI16A  56.46£0.19 61.65+0.86 61.86+£0.69 64.944+0.73 65.98+0.95
WI116V  58.03£0.45 61.45+0.99 63.97+£0.24 65.21+0.96 68.32+0.32
w164 50.82£0.15 62.06+£0.26 60.23+0.07 67.05£0.35 71.86:+0.38
W231 27.66+0.92 4534+£049 43.654+0.15 55.38+0.84 63.77+£0.55
W232 29.97+0.46 31.68+£0.22 30.254+0.57 32.41+0.49 37.63+£0.26

can be formulated as the nonzero areas in the snapshots which are located in the zero area of the
anatomical atlas (the area without region number). The performance of objective function (3.11) on
region-based datasets is analyzed in Figure 3.7.D by using different distance metrics, i.e. Woods
function (W), Correlation Ratio (CR), Joint Entropy (JE), Mutual Information (MI), and Normalized
Mutual Information (NMI) [61, 95]. As depicted in this figure, the NMI generated better results in

comparison with other metrics.

3.7.5 Representing Neural Activities

In this section, we visualize some samples of neural activities that are selected as the snapshots in

data R105. As Figure 3.8 depicted, while some of these neural activities are significantly distinctive,
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Figure 3.7 Parameters Analysis: (A) The effect of different o values on the # of wrong detected snapshots, (B)
and (C) two examples for the error of registration (normalization): the red rectangles illustrate the error areas after

registration, (D) The effect of different objective functions in (3.11) on the error of registration.
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Figure 3.8 Representing neural activities of selected snapshots in data R105

the rest of them are highly correlated. However, the proposed feature selection technique segment
these neural activities to different anatomical regions, and then we select active regions. Thus, the
sparsity of these features is significantly reduced in within region. Indeed, this is the main motivation

for us to analyze the features in the anatomical region level rather than the whole of data at same time.
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Figure 3.9 Unsupervised similarity analysis based on WSCE

3.7.6  Visualizing Unsupervised Similarity

In this section, we visualize the unsupervised similarity of the region-based datasets by using the
generated WEAC matrix in the WSCE method. Figure 3.9 illustrates the dendrogram of the neural
activities, where similar categories of stimuli are connected to each other in a nested structure. It is
worth noting that these similarities are directly generated based on the neural activities without any
supervised information. Thus, there are suitable to estimate how much the neural pattern in different
categories of stimuli are linearly independent (or dependent) to each other. In Chapter 4, we will
present a novel supervised approach that is called Deep Representational Similarity Analysis (DRSA)
for analyzing the similarity of the neural activities. Indeed, DRSA not only uses the brain patterns

to apply the similarity analysis but also it employs the supervised information in the design matrix to

detect within- or between- class stimuli.

3.8 Conclusion

There is a wide range of challenges for fMRI analysis. In this section, we discuss some of them,
1.e., decreasing noise and sparsity, defining effective regions of interest (ROIs), visualizing results,

and the cost of brain studies. In overcoming these challenges, this section proposes Multi-Region
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Neural Representation as a novel feature space for decoding different stimuli in the human brain. The
proposed method is applied in three stages: firstly, snapshots of brain image (each snapshot repre-
sents neural activities for a unique stimulus) are selected by finding local maximums in the smoothed
version of the design matrix. Then, features are generated in three steps, including normalizing to stan-
dard space, segmenting the snapshots in the form of automatically detected anatomical regions, and
removing noise by Gaussian smoothing in the level of the detected regions. Finally, we propose two
learning approaches. Indeed, extracted features can be analyzed by using both unsupervised learning
and supervised learning. This thesis proposed a cluster ensemble approach in order to apply unsu-
pervised learning, where similarities or distances between neural activities can be compared across
subjects. As the supervised alternative, we develop an ensemble classification (i.e., bagging tech-
nique) on binary ¢1-regularized SVM classifiers, where they are created by employing each of neural
activities in the level of ROlIs, i.e., each snapshot represents neural activities for a unique stimulus.
Experimental studies show the superiority of our proposed method in comparison with state-of-the-art
methods. In addition, the time complexity of the proposed method is naturally lower than the classical
methods because it employs a snapshot of brain image for each stimulus rather than using the whole

of time series.
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Chapter 4. Deep Representational Similarity Analysis

As one of the fundamental approaches in fMRI analysis, Representational Similarity Analysis
(RSA) [7, 27, 28] is a supervised approach that evaluates the similarities (or distances) between dis-
tractive cognitive tasks. In practice, RSA can be mathematically formulated as a multi-set (group)
regression problem, i.e., a linear model for mapping between the matrix of neural activities and the
design matrix [34]. Original RSA employs basic linear approaches, such as Ordinary Least Squares
(OLS) [7] or General Linear Model (GLM) [28]. Indeed, these methods cannot provide acceptable
performances on real-world datasets, e.g., datasets with broad Region of Interest (ROI) or whole-brain
fMRI data [3, 13, 104, 105]. On the one hand, the number of voxels in most of fMRI datasets are
more than time points. Thus, the matrix of neural activities may not be full rank [13]. On the other
hand, the mentioned methods must calculate the inverse of the covariance matrix of the neural activ-
ities for solving the RSA problems [19]. This inverse may reduce the stability of the results when the
covariance matrix includes low Signal-to-Noise Ratio (SNR) [3].

As the first group of modern approaches, some of the new RSA methods utilize the Bayesian
technique [3, 29]. As one of these algorithms, Bayesian RSA (BRSA) [3] considers the covariance
matrix as a hyper-parameter generative model and then calculates this matrix from neural activities.
Although Bayesian methods can significantly improve the SNR issue and even handle some nonlinear
datasets, they are limited to a restricted transformation function (Gaussian distributions of the hyper-
parameters). As another problem in the classical approaches, OLS and GLM also do not use the
regularization term to avoid the overfitting. The second group of modern approaches focused on
the regularization issue. While Ridge Regression method [30] utilizes an additional norm ¢2 for
solving the mentioned issue, Least Absolute Shrinkage and Selection Operator (LASSO) method
[31] employs norm /1 to regularize the regression problem. As another alternative, the Elastic Net
method [32] made a trade-off between /1 and /2 norms. Moreover, other techniques developed novel
regularization terms, such as Octagonal Shrinkage and Clustering Algorithm for Regression (OSCAR)
[33] or Ordered Weighted /1 (OWL) [34, 35]. As the primary problem, these methods always consider

that the relations between features are linear.
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4.1 Representational Similarity Analysis (RSA)

fMRI time series collected from ¢-th subject can be denoted by X(©) = {x”} € RTxVers 1 <
i <T,1 < j < V,g, where T'is the number of time points, and V., denotes the number of voxels
in the original space. This thesis assumes that the neural activities of each subject are column-wise
standardized, i.e., X) ~ A/(0, 1). We can also consider this condition as a preprocessing step if the
original data is not standardized. Indeed, RSA method is looking for the following objective function:

min

2
X® —pOBO| 4 r(BY), 4.1)
B F

where D) = {dlk} e R™P dy € R,1<i <T,1<k< P is the design matrix, B{Y) = {Bkj} €
RP*Vers 3. € R,1 < k < P,1 < j <V, denotes the matrix of estimated regressors, and r(B®)
is the regularization term for /-th subject. Here, P denotes the number of distinctive categories of
stimuli, and d%) € RT,1 < k < P as the k-th column of the design matrix is the convolution of the
onsets of k-th category (0.(,? € RT) with E as the Hemodynamic Response Function (HRF) signal,
ie,d? =0 «E[3,19].

In (4.1), the regularization term is zero (r(B) = 0) for non-regularized methods, including OLS,
GLM, and BRSA. The term r(B) is aHBHi for Ridge Regression, ozHB”L2 for LASSO method,
apHB||172+0.5a(1 —p) HBH; for Elastic Net method. Here, we have o > 0,0 < p < 1, and ||B||172 =
S HB,CHQ In addition, OWL utilizes 7(B) = 3.1 _, Ae||B.

0 where the rows of matrix B is
sorted from greatest /2 norm to the smallest one, and )\, is non-negative and non-increasing weights.
In some sense, the OWL regularization term is a generalized version of the OSCAR regularization,
1.e. \; is weights with linear decay [34].

In order to generalize RSA for multi-subject fMRI datasets, we calculate the mean of the regres-

sors matrices across subjects:

s
1
*_ ()
B =~ > BY), (4.2)
=1
where S denotes the number of subjects, and each row of B* € RP*Vers = {B{., N }, B; € RVors

illustrates the extracted neural signature belong to k-th category of cognitive tasks.
Three metrics will be used to evaluate the performance of RSA methods. As the first metric, we

calculate the mean of square error for analyzing the accuracy of regression:
L SN (0N 040
¢ 0) (t
MSE = —— ;_1: ;:1: ;:1: (q;] - ;—1 4 ,3M> . (4.3)
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Figure 4.1 Deep Representational Similarity Analysis (DRSA) approach

The next two techniques evaluate between-class correlation and between-class covariance of the re-

gressors matrices:

S
CR = éz mag{corrasi.”, Bﬁ.“)}, (4.4)

1 S
V=52 max,{covmﬁf), ﬁ;”)}, (4.5)

where BZ(_Z), Bf) € B, function Corr is the Pearson correlation, and function Cov calculates the
covariance between two vectors. All of these three metrics must be minimized for an ideal solution

[3, 34, 105].

4.2 Deep Representational Similarity Analysis (DRSA)

As Figure 4.1 depicted, DRSA maps nonlinear neural activities to a linear embedded space by
using a transformation function, i.e. x € R"ors — f (x) € RY, where V < Vorg denotes the number
of mapped features in the linear embedded space. Although f can be any restricted fixed transforma-
tion function (such as Gaussian or Polynomial), this thesis uses multiple stacked layers of nonlinear

transformation function as follows:

f(x;8) = Wche_; + be,
(4.6)
h,, = g(W,h,,_1 +b,,) for2 <m < C,
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where h; = x, C' > 3 is the number of deep network layers, 8 = {W,,, b, for2 < m < C}
denotes all network parameters, and ¢ is a nonlinear function applied componentwise, i.e., Rectified
Linear Unit (ReLU), sigmoid, or tanh [13]. By considering U™, 2 < m < C' as the number of units
in m-th intermediate layer, the parameters of the output layer are denoted by Wy € RV >V ,bo €
RY. For 2 < m < C, the parameters of intermediate layer are defined by W,,, € RV U™ 'p
RU"™ except Wy € RU®*Vers. By using the proposed transformation function, DRSA objective

function can be denoted as follows:

min q(xw p©® B §© \1'@) +r(B“>) “.7)
B(Z)Ve([) b b ) ) b

where WU) is a set of randomly selected time points related to j-th iteration and the size of this set

(|¥Y)| < T) is equal to the batch size. The main term of DRSA method is defined as follows:

ey ()

where x; € RV denotes all voxels belong to i-th time point (row) of the neural activities X, and
d;, € R'™" is the i-th row of the design matrix D. Unlike other applications of deep transformation
function [13, 41, 42], we consider a fixed structure of deep network layers for all subjects, including
f(x),0) rather than f,(x\?),0(9)). This notation can improve the stability of generated results and
also decrease the number of parameters that must be estimated for each RSA problem. Thus, we just
need to estimate additional network parameters (), 1 < ¢ < S) for each problem in comparison
with the classical RSA approaches. Further, DRSA regularization term is defined as follows, where

a > 1 is the scaling factor that must be defined based on data normalization:

v P
r(B) = ZZ&’BM
j=1 k=1

Here, we propose an optimization approach for DRSA problem. This method seeks an optimum

+10a (5kj)2. (4.9)

solution for (4.7) by using two different steps, which iteratively work in unison. By considering fixed
network parameters (0()), RSA objective function (J3) is firstly optimized as follows by using the

j-th mini-batch (W) of neural activities:

min (J}? —y (x@, D, BO 9, ‘I’(j)) e (B“))) . (4.10)

B
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Lemma 4.1. For minimizing Jg, we have:

Ve (JR> = qsign (B) + 20aB — 2 Z dz (f(xz;; 9) — di_B>

I 46

where sign (B) € { -1, +1}PXV is the sign function.

Proof.
Vg (JR> _ a%q(x,D,B, B,T(j)> v a%r(B)
So, we have:
(XD B0) - S a0 anf -
T
226%) aB( x;;0) — d; B) (f(xi,;e) —di,B) =
2 Z (a%f(xz, 9) - a%di.B> T (f(xz7 9) - di.B>>
ey ()

where -2 f(x;;0) = 0 and :2d; B = d,, so we have:

a%q(XDBG‘I’(J>:—2ZdT< x;.: 0 di.B)

iew()

As the next term, we have to calculate the derivation of the regularization function:

MORD R

By considering the following term:

+ 100 Z Z aBﬂkJ

|Brl/61; = sign(B;) k=i, j=¢
(B),, -

0 otherwise

where we assume sign(0) = 1 and have:

ii B)Bkj

_]:1 k=1

= sign (B)
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Further, we can also define following term:

) /32 25kj k=i, j=¢
——— B = 7
3(B)i€ 0 otherwise
so we have:
vV P
9 9
Y o=
=1 k=1

Further, the derivation of the regularization function is

0

a—Br(B> = «a/sign (B) + 20aB.

Thus, the whole of procedure results:
Vs <JR) - a%q(X,D, B, O,T@) + %r(B) _
asign (B) +200B-2 Y d] < £(x:;0) — dl-,B)

iey(@)

]

As the next step, back-propagation algorithm [56] is applied to the kernel objective function (Jx)

in order to update the network parameters in the j-th iteration:

min <Jg> — q(x(@, D B® ¢ T(j))) ’ (4.12)
0

where we consider the regressors matrix (B()) is fixed in this step.

Lemma 4.2. The network parameters (0) can be updated by considering the vector d; B as the ground

truth of f (Xi_; 9) and then using back-propagation algorithm to update the parameters.

Proof. Since f (xi.; 9) is a standard multilayer perceptron (MLP), we can update the network param-
eters by using Vi < f (xi.; 9) ), where the output of the optimized deep neural network has the lowest
error in comparison with the vector d; B (as the ground truth). By reducing this error, Jx will be
also minimized. Please refer [56] for technical information related to MLP and back-propagation

algorithm. [
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Algorithm 4.8 Deep RSA for ¢ — th subject
Input: Data X\, Design D), Number of layers C', Number of units I/ ™) for m = 2:C, Learning rate

n (default 10~%), Maximum Iteration M (default 1000), Batch Size N (default 50), Scaling parameter
« (default 10), Adam optimization parameters yi; = 0.9, jio = 0.999, € = 1078 [106].
Output: Regressors matrix B(), and Parameters 0(*)

Method:

01. Initialize 0) ~ A(0,1), B ~ N(0,1).

02. 5y < 0 (Initialize 1°* moment vector)

02. 7y < 0 (Initialize 2" moment vector)

03. FOR j = 1:M

04. Create YU) by selecting N samples from 1 to 7.

05, &= iewor Vao (J5).

06.  Update B®) < B®) — ;.

07 &5 = Liewin Vo (f(x:09) ).

08. §; < p10,—1 + (1 — 7)o,

09. ;¢ poyj—1+ (1 — ﬂz)(b]z-

10. g] — % f(1— ).

1. 5 7%/ - ).

12 Update 0 < 00 — 13, /(1/; — )

13. END FOR.

Algorithm (4.8) illustrates the whole of the optimization procedure. As the first step, the network
parameters are considered fixed, and then Stochastic Gradient Descent (SGD) [13, 42, 107] updates
the regressors matrix B() belong to /-th subject. As the second step, the regressors matrix is assumed
fixed, and then the Adam [106] approach updates the deep network parameters. In order to generalize
DRSA for the multi-subject problem, we also employ (4.2) for calculating the mean of the regressors
matrices across subjects.

In summary, this section develops DRSA as a flexible deep approach for improving the per-
formance of representational similarity analysis (RSA) method in fMRI analysis. For seeking an
efficient analysis, DRSA uses a deep network (multiple stacked layers of nonlinear transformation)

for mapping neural activities of each subject into an embedded space (f : RV>rs — RY). Unlike the

64



Nanjing University of Aeronautics and Astronautics

Table 4.1 Mean of square error (M SFE) across subject, standard deviation of MSE for all methods is lower than

1072 Datasets RSA LASSO Elastic Net OWL BRSA GRSA DRSA
R105 0.984  0.874 0.864 0.812 0.785 0.701  0.452
R107 0971  0.868 0.831 0.789 0.832 0.752  0.632
R232 0.999  1.000 0.990 0.895 0.764 0.652 0.435
w001 0985  0.953 0.965 0916 0.893 0.831 0.691
w002D 0.953  0.632 0.722 0.483 0.677 0.538  0.156
W002P 0948  0.732 0.738 0.708 0.509 0.235 0.137
WO005 0.989  0.899 0.864 0.831 0.863 0.746  0.372
WoOI11D 0973  0.921 0.902 0.874 0.821 0.802  0.582
WO011W  0.968  0.898 0.834 0.784 0.800 0.712  0.699
w017 0.988  0.602 0.681 0.737 0.599 0.430 0.288
WO052R 0996 00915 0.745 0.482 0.721 0.143  0.066
WO052W  0.997  0.810 0.777 0.503 0.671 0.204  0.050
w102 0.989  0.771 0.691 0.231 0372 0389 0.160
W105 0991 00914 0.876 0.843 0.798 0.734  0.324
w107 0.973  0.972 0.952 0.900 0.892 0.712  0.468
WI116A 0990 00918 0.943 0.897 0.851 0.832  0.783
WI116V 0988  0.950 0.942 0.895 0.893 0.800 0.431
w164 0970  0.688 0.614 0.532 0395 0375 0.286
W231 0.986  0.853 0.832 0.773 0.731 0.733  0.594
W232 0.381  0.345 0.340 0.302 0.289 0277  0.195

previous nonlinear methods that used a restricted fixed transformation function, mapping functions
in DRSA are flexible across subjects because they employ multi-layer neural networks, which can
implement any nonlinear function [13, 41, 42]. Therefore, DRSA does not suffer from disadvantages
of the previous nonlinear approach. Finally, DRSA can handle a large number of subjects by using

the proposed optimization algorithm, including gradient-based optimization approaches.

4.3 Experiments

The empirical studies are presented in this section. For generating the experiments, we employ

the original RSA by using GLM method as a baseline. Further, we report the performance of LASSO
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Table 4.2 Maximum of between-class covariance (C'V') across subjects (max+std)

Datasets RSA LASSO Elastic Net OWL BRSA GRSA DRSA

R105 2.73240.123  0.5234+0.139 0.532+0.140 0.426+0.076 0.598+0.132 0.276+0.082 0.140+0.018
R107 1.629+0.113  0.3574+0.078 0.35540.078 0.242+0.082 0.2894+0.072 0.173+0.081 0.096+0.011
R232 0.030+£0.003  0.02740.001 0.026+0.001 0.024+0.012 0.0304+0.023 0.028+0.032 0.026+0.023
w001 3.831£1.042 0.245+0.104 0.2494+0.105 0.091£0.072  0.0624+0.020 0.0924+0.032  0.013£0.010
W002D  2.124+0.042 0.889+0.053 0.80140.081 0.751+£0.023 0.843+0.017 0.563+0.099 0.102+0.002
WO002P  2.941+0.014 0.937+£0.021 0.8384+0.012 0.800+0.067 0.261+0.043 0.489+0.055 0.090-+0.009
WO005 0.262+0.018 0.2264+0.013  0.240+0.027 0.200£0.029 0.1824+0.052 0.107+0.028 0.087+0.003
WO011D  0.471+0.073  0.162£0.027 0.1624+0.023 0.142+0.062 0.152£0.023  0.0514+0.043  0.019+0.032
WO11W  0.766+£0.124  0.255+£0.023 0.258+0.031 0.2324+0.043 0.127£0.012 0.102+0.021  0.027+0.013
w017 0.493+0.031 0.1944+0.077 0.23740.093 0.179+£0.071  0.3514+0.041 0.2304+0.071  0.053+0.010
WO052R  1.3344+0.092 0.377£0.094 0.357+0.011 0.246+0.031 0.144£0.006 0.1994+0.020 0.001-+£0.001
WO052W  1.774+0.087 0.419£0.026 0.3964+0.072 0.305+£0.041 0.302+£0.061 0.1084+0.026  0.011+0.007
w102 2.1114+0.048 0.235+£0.000 0.2004+0.004 0.208+0.023 0.193£0.054 0.242+0.054 0.019+0.002
W105 4.788+0.592 0.2164+0.093 0.217+0.032 0.15940.011 0.1954+0.032 0.099+0.096 0.0254-0.046
W107 1.839+£0.125 0.3624+0.049 0.331+0.044 0.172£0.021 0.2324+0.074 0.251£0.051 0.042+0.006
WII6A  0.505+0.106 0.147£0.003 0.1434+0.020 0.120£0.039 0.059+0.001 0.1024+0.048  0.018-0.000
WIl6V  2.22440.864 0.021+£0.012 0.0214+0.005 0.021+£0.003 0.054+0.002 0.020+0.010 0.019+0.011
w164 8.890+0.087 0.174£0.004 0.1694+0.031 0.108+0.009 0.289+0.072 0.100+0.006 0.037-+0.004
W231 0.438+0.072 0.3254+0.052 0.3254+0.023 0.300£0.037 0.1264+0.045 0.272+0.076 0.014+0.013
W232 0.016£0.003 0.014+0.020 0.010+0.007 0.023+£0.002 0.038+0.021 0.03440.025 0.030£0.020

algorithm [31], where parameter o = 0.9 generates the best results. As another regularized method,

Elastic Net is also used for evaluating the proposed method. In this method, the best results are

achieved by v = 1.0 and p = 0.5. As the last method with regularization term, the performance of

OWL is also presented. To generate the results, Spike weight sequence is employed for OWL method,

as the best approach in the original paper [34]. As one of the Bayesian approaches, the performance

of Bayesian RSA (BRSA) is also analyzed. All parameters in this method are assigned optimum

based on the original paper [3]. Moreover, the number of iterations for all of the mentioned methods

is considered 2000. This thesis reports the performance of the proposed method with two different

transformation function, including linear, and deep. As the linear approach, Gradient RSA (GRSA)

utilizes the objective function (4.7) and optimization Algorithm (4.8), but the transformation function

is considered linear, i.e., f (x) = X. The aim of reporting GRSA is illustrating how much the proposed
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Table 4.3 Maximum of between-class correlation (C' R) across subjects (max+std)

Datasets RSA LASSO Elastic Net OWL BRSA GRSA DRSA

R105 1.14740.042 0.751£0.242 0.7314+0.212 0.8214+0.120 0.389£0.010 0.451£0.081 0.372+0.016
R107 0.922+0.053 0.715+0.147 0.718+0.148 0.5314+0.123 0.458+0.076 0.1424+0.092  0.135+0.000
R232 1.027£0.033  0.9004+0.026  0.876+£0.210 0.631+£0.193 0.871£0.100 0.5554+0.112  0.496+0.093
w001 0.767+£0.119  0.289+0.126 0.292+0.147 0.3024+0.021 0.584+0.043 0.324+0.041 0.30740.010
W002D  2.1244+0.045 0.389+0.071 0.4114+0.054 0.2894+0.025 0.319£0.011 0.4324+0.025 0.102+0.005
WO002P  2.941+0.011 0.481£0.067 0.481+0.032 0.3614+0.004 0.500+0.000 0.099+0.006 0.090+0.012
WO005 0.891+£0.035 0.823+0.036  0.739+£0.036  0.699+0.076 0.519+0.045 0.3614+0.021 0.139+0.019
WO011D  0.887+0.093 0.690£0.131 0.621£0.092 0.588+0.010 0.610+0.037 0.593+0.027 0.165+0.076
WO011W  0.827£0.032 0.607£0.058 0.507£0.021 0.436£0.071 0.591+0.068 0.3674+0.100 0.253+0.051
w017 0.493+0.062 0.365+0.032 0.341+£0.026  0.420+0.008 0.075+£0.003 0.1054+0.041 0.053+0.019
WO052R  1.334+0.039 0.377£0.069 0.384+0.021  0.2094+0.037 0.106+0.052 0.231+0.075 0.015+-0.000
WO052W  1.774+0.099 0.692+£0.041 0.471+0.052 0.2964+0.019 0.1114+0.003  0.182£0.041  0.011+0.001
w102 2.11740.072  0.3554+0.088 0.404+0.051 0.352+0.006 0.080+0.009 0.2664+0.061 0.019+0.005
W105 1.158+£0.074 0.696+0.119 0.621£0.099 0.569+0.073 0.724£0.069 0.6394+0.031 0.461+0.112
W107 0.917+0.031 0.652+0.074 0.520£0.008 0.366+0.029 0.444+0.091 0.35940.055 0.160+0.021
WII6A  0.951+0.045 0.851£0.077 0.799+0.038 0.5724+0.155 0.383+0.051 0.451+0.012  0.270+0.039
WI116V  0.637£0.105 0.472+0.163 0.459£0.191 0.327£0.076  0.231£0.021 0.1324+0.021 0.32840.011
w164 8.890+0.108 0.241+£0.057 0.2284+0.081  0.3424+0.002 0.176+0.021 0.174+0.004  0.037+0.002
W231 0.888+0.113 0.761£0.114 0.700+0.172  0.4214+0.273 0.521+0.082 0.231£0.063  0.126+0.002
W232 1.024£0.046  0.902+0.028 0.893 £0.021 0.7114+0.121 0.421£0.121  0.6214+0.094 0.235+-0.016

method can improve the performance of RSA analysis without deep transformation. Finally, we have

presented the performance of DRSA. We generate results in both GRSA and DRSA by using differ-
ent values of a = [1, 5, 10,20, 50, 100]. In all datasets with normalization X ~ A/(0,1), o = 10

has generated better trade-off between covariance and correlation in comparison with other values.

Moreover, we evaluate the performance of DRSA by employing different nonlinear activation func-

tions, including ReLLU, sigmoid, tanh. In most of the normalized datasets, the proposed method by

using sigmoid activation function has generated better performance. In GRSA and DRSA, the number

of iterations is considered 1000, the batch size is assigned 50, learning rates is 10~ for normalized

datasets, and the Adam optimization parameters are set optimum based on the original paper [106],

including z1; = 0.9, py = 0.999, and € = 10~%. In this section, all algorithms are implemented by
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Figure 4.2 Runtime Analysis

Python 3 on a PC with certain specifications' by authors for generating the experimental results.

4.3.1 Performance analysis

Table 4.1 shows the benchmarking of different RSA algorithms by using mean of square error
(MSE), i.e., metric (4.3). In this table, the standard deviation of all RSA methods is lower than 1072,
Table 4.2 has also analyzed the maximum of between-class covariance by using (4.5). Further, Table
4.3 has evaluated the maximum of between-class correlation by utilizing (4.4). In this section, we
have employed two hidden layers for DRSA, i.e., C' = 4. Here, we present the number of units for the
hidden layers and the output layer as follows, [H L1, HL2, OUT]. As an example, [1000, 700, 500]
represents U = 1000 as the number of the first hidden layer, U® = 700 as the number of the
second hidden layer and V' = 500 as the output layer. The best results for R107 are achieved by
[400, 200, 100]. While we can use any format for the structure of the deep network, the rest of DRSA
experiments are generated by using [1000, 700, 500] setting. In practice, this structure can provide
an efficient trade-off between runtime and performance for DRSA method. As depicted in the result
tables, DRSA has generated better performance in comparison with other methods because it firstly
provides better feature representation in the linear embedded space and then effectively estimates the
similarities between different cognitive tasks (please also compare the performance of GRSA with

other RSA methods).

'CPU = Xeon E5-2630, RAM = 64GB, GPU = GeForce TITAN X, OS = KDE Neon 16.04.3, CUDA = 9.0, CuDNN = 7.0.5,
Python = 3.6.5, Pip = 9.0.3, Numpy = 1.14.2, Scipy = 1.0.1, Scikit-Learn = 0.19.1, Tensorflow = 1.7.0.
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Figure 4.3 Comparing correlation of raw and deep features by using R105

4.3.2 Runtime analysis

This section analyzes the runtime of the proposed method and other RSA methods by employing
ROI-based datasets. As mentioned before, all results in this section are generated by using a PC with
certain specifications. Further, the runtime of DRSA is evaluated by using both hardware, i.e., CPU
(DRSA) and GPU (DRSAg). Figure 4.2 demonstrates the runtime of the mentioned methods, where
runtime of other algorithms are scaled based on DRSA. In other words, the runtime of the proposed
method is considered as a unit. As illustrated in this figure, BRSA generated the worse runtime
because it must estimate a wide range of hyper-parameters for high-dimensional datasets. Further,
the runtime of DRSA is similar to the regularized methods (LASSO, Elastic Net, OWL), while those
algorithms did not utilize any transformation function. Since GRSA (same as DRSA) employs a
min-batch of time-points, it produces better runtime in comparison with the regularized methods.
By considering the performance of the proposed method in the previous section, DRSA generates
acceptable runtime. As mentioned before, the proposed method utilizes gradient-based approaches
that can rapidly reduce the time complexity of the optimization procedure. It is worth noting that

runtime of whole-brain datasets has the same tendency.
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Figure 4.4 Supervised similarity analysis

4.3.3 Visualizing Supervised Similarity

In this section, we show why DRSA can provide better similarity analysis in comparison with
other linear methods. Based on R105 data, Figure 4.3 illustrates the correlation matrices in both
the original space and the embedded space that is generated by using the deep kernel. As this figure
depicted, the cell located in i-th row and j-th column shows how much their corresponding categories
of stimuli are dependent on each other. As mentioned before, the deep kernel in DRSA maps the
neural activities to an embedded space, where the similarity analysis can be applied by using a linear
clustering (model) approach. Further, this figure demonstrates that the extracted features are linearly
independent in the embedded space. Indeed, we have reported the maximum value of these cells
in Table 4.3 and Table 4.2 across each of RSA techniques. Here, smaller correlation /or covariance
values represent better similarity analysis. Moreover, we can show how much the neural signature in
the embedded space is information-rich. Figure 4.4 visualizes the supervised similarity of the region-
based datasets by using the generated B* matrix in the DRSA method. As this figure illustrated,
DRSA can generate different nested similarity analysis in comparison with WSCE by using supervised

information.
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Figure 4.5 Representing neural activities of selected snapshots in data R105
4.3.4 Representing Neural Activities

In this section, we visualize some samples of neural activities based on B* matrix that is gen-
erated for datasets R105, and R107. As Figure 4.5 shows the generated neural signatures. Here, we
demonstrate the left side of the brain for R107 because there is no ROI region on the right side for
this dataset [108]. Like the previous chapter, while some of the neural activities are significantly

distinctive across categories of stimuli, the rest of them are highly correlated.

4.3.5 Whole-brain data analysis

One advantage of using whole-brain data is comparing different datasets. Previously, the main

challenge for analyzing these data was the number of dimensions, i.e., the raw-voxels are noisy and
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Figure 4.6 Comparing the similarities (or differences) across whole-brain datasets

sparse [3]. As the previous sections demonstrate, the classical methods cannot provide stable per-
formance for analyzing whole-brain data. The proposed method can improve both the performance
and runtime of whole-brain analysis by mapping the neural activities to an embedded linear space.
As mentioned before, the number of original voxels in all of the whole-brain data 1s V,,., = 19742.
In the previous section, the deep transformation function maps these voxels to a linear embedded
space with V' = 500 dimensions by utilizing a network with [1000, 700, 500] structure. We believe
that not only can this transformation function significantly reduce the noise and sparsity but also the
extracted neural signatures are information-rich. Thus, we compare the distance of these signatures
across datasets. Figure 4.6 shows this comparison, where (for each pair of datasets) the distances be-
tween different categories of the first dataset are compared with all categories of the second datasets,
ie, 0 Zfil gy — 63(..*’2) z, BUM e Bk, Here, the regressors matrix B**) is related to
k-th datasets and calculated by using (4.2). As Figure 4.6 shows, the datasets related to each type of

cognitive tasks (visual stimuli, decision making, and flavor) have more within-category similarity.
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4.4 Conclusion

This section extended a deep approach for Representational Similarity Analysis (RSA) methods
in order to provide accurate similarity (or distance) analysis in multi-subject fMRI data. Deep Repre-
sentational Similarity Analysis (DRSA) can handle fMRI datasets with noise, sparsity, nonlinearity,
high-dimensionality (broad ROI or whole-brain data), and a large number of subjects. DRSA utilizes
gradient-based optimization approaches and generates an efficient runtime on large datasets. Further,
DRSA is not limited by a restricted fixed representational space because the transformation function
in DRSA is a multi-layer neural network, which can separately implement any nonlinear function for
each subject to transfer the neural activities to an embedded linear space. To evaluate the performance
of the proposed method, multi-subject fMRI datasets with various tasks—including visual stimuli, de-
cision making, flavor, and working memory—are employed for running the empirical studies. And,
the results confirm that DRSA achieves superior performance to other state-of-the-art RSA algorithms

for evaluating the similarities between distinctive cognitive tasks.

73



Functional Alignment and Feature Learning with Neuroimaging Data

Chapter 5. Imbalance Multi-Voxel Pattern Analysis

In order to decode neural activities in the human brain, Multi-Voxel Pattern Analysis (MVPA)
technique [19, 20, 85] must apply machine learning methods to task-based functional Magnetic Reso-
nance Imaging (fMRI) datasets. In this section, we develop a modified version of imbalance Adapting
Boosting (AdaBoost) algorithm for binary classification. This algorithm uses a supervised random
sampling and penalty values, which are calculated by the correlation between different classes, for
improving the performance of prediction. This binary classification will be used in a one-versus-all
Error-Correcting Output Codes (ECOC) method as a multiclass approach for classifying the categories

of the brain response.

5.1 Imbalance AdaBoost Binary Classification (IABC)

In previous sections, we mentioned the imbalance issue in the MVPA analysis. In practice,
there are two approaches in order to deal with this issue, i.e. designing an imbalance classifier, or
converting the imbalance problem to an ensemble of balance classification models. Previous studies
demonstrated that the performance of imbalance classifiers may not be stable, especially when we
have sparsity and noise in our datasets [19, 20, 109]. Since fMRI datasets mostly include noise and
sparsity, this paper has chosen the ensemble approach. Technically, ensemble learning also contains
two groups of solutions, i.e. bagging or boosting. While bagging (such as our method in Chapter 3)
generates all classifiers at the same time and then combine all of them as the final model, the boosting
gradually creates each classifier in order to improve the performance of each iteration by tracing errors
of previous iterations. We just have to note that ensemble learning can be used in both balance and
imbalance problems. In fact, the main difference comes from the strategy of sampling. In balance
problems, sampling methods are applied to the whole of datasets, whereas instances of the large class
are sampled in the imbalance problems [109]. As depicted in Figure 5.1, this paper presents a new
branch of AdaBoost algorithm, which is called Imbalance AdaBoost Binary Classification (IABC),
in order to significantly improve the performance of the final model in fMRI analysis. In a nutshell,

this algorithm firstly converts an imbalance MVPA problem to a set of balance problems. Then, it
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Figure 5.1 The proposed AdaBoost algorithm for applying a robust binary classification

iteratively applies the decision tree [109] to each of these balance problems. Finally, AdaBoost is
used in order to generate the final model. In the proposed method, the weight of each classifier (tree)
for the final combination is generated based on the error (failed predictions) of the previous iterations
for gradually improving the performance of the final model.

In order to apply the binary classification, this paper randomly partitions the extracted features X
into the training set X and the testing set X. As a new branch of AdaBoost algorithm, Algorithm 5.9
employs X for training binary classification. Then, X is utilized for estimating the performance of the
final model. As mentioned before, the binary classification for fMRI analysis is mostly imbalance,
especially by using a one-versus-all strategy. Consequently, the number of samples in one of these
binary classes is smaller than the other classes. As previously mentioned, this paper exploits this
concept in order to solve the imbalance issue. Indeed, Algorithm 1 firstly partitions the training data
X into small X and large X, classes (groups) based on the class labels Y™ ¢ { + 1, —1}. Here,
all labels are —1 except the label of instances belong to m-th category of visual stimuli. Then, it
calculates the scale J of existed elements between two classes. We have to note that int() defines
the floor function. As the next step, the large class is randomly partitioned into J parts. Indeed, .J is
the number of balance subsets generated from the imbalance dataset. Consequently, the number of

the ensemble iteration is /. In each balance subset, training data i(an) is generated by all instances
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Algorithm 5.9 Imbalance AdaBoost Binary Classification (IABC)
Input: Training set X, Class labels Y™,

Output: Set of classifiers ©(™),

Method:

01. Based on Y™, partitioning X = {Xg, X}
. . p:(_L\

02. Calculating J = mt(lxsl).

03. Random sampling: X; = {)N((Ll), )N((LQ), o ,)N((Ln), o ,)N((LJ)}.
04. Initiate X' = Y = 0.

05. For (n=1...J):

06. )N(FE,Z,) = {)N(S,)NC(L”),X(n)} as training-set for this iteration.

07. \N{g,f; ) — {SN{S, SN{(L”),Y(”)} as class labels for this iteration.
(n)

1 for instances of )25 or X
08. WM = o N

1-— |corr(XS, X(Ln)) | for instances of X(L")
09. 6™ = classifier(X\", Y{?), W(™) as weighted decision tree.

(n+1)

10  Constructing X as instances cannot truly trained in 6().

< (n+1)
(n) _ X ‘
1 1 . 6 h— i(n") |

T
12. o™ =1m (1:&(; ') AdaBoost weight for the classifier 6.
13. End For

14. Return O™ (z) = sign( S ame) (m)) as the final model.

as error of classification.

n=1

of the small class Xg, one of the partitioned parts of the large class X, and the instances of the

)

previous iteration X" , which cannot truly be trained (the failed predictions). After that, training

weights for the final combination (W™ ¢ [0, 1)) are calculated by using the Pearson correlation

%) between training instances, where larger values increase the learning sensitivity.

(corr(a, b) =
Indeed, these weights are always maximized for the instances of the small class and the failed instances
of the previous iterations. Further, the weights of the other instances are a scale of the correlation
between the large class and the small class. Therefore, these weights are updated in each iteration
based on the performance of previous iterations. As the last step of each iteration, the proposed

method generates a classification model (™) and its weight («(™) for the final combination. While

classifier() can denote any kind of weighted classification algorithm, this paper employs a simple
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Figure 5.2 The proposed Error-Correcting Output Codes (ECOC) approach for multi-class classification

Training
Data

weighted decision tree [109] as the classification model. At the end, the final model is created by

applying the AdaBoost method to the generated balance classifiers.

5.2 Multi-class IABC Classification Algorithm

In this paper, a multi-class classifier is a prediction model in order to map extracted features
to the category of visual stimuli, i.e. © : X - Y, red Where Y,cq € {1, 2,...,P } Generally,
there are two techniques for applying multi-class classification. The first approach directly creates
the classification model such as multi-class support vector machine [83] or neural network [85]. In

contrast, decomposition design (indirect) uses an array of binary classifiers for solving the multi-class

problems.

Based on the previous discussion related to imbalance issue in fMRI datasets, this paper utilizes

Error-Correcting Output Codes (ECOC) as an indirect multi-class approach in order to extend the
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proposed binary classifier for the multi-class prediction. As depicted in Figure 5.2, ECOC includes
three components, i.e. base algorithms, coding matrix and decoding procedures [110]. Since this
paper uses one-versus-all encoding strategy, Algorithm 5.9 is employed as the based algorithms (©(™)
in the ECOC, where it generates a binary classifier for each category of visual stimuli. In other words,
each independent category of the visual stimuli is compared with the rest of categories. Consequently,
the size of the coding matrix is P x P, where i-th diagonal cell of this matrix represents the positive
predictions belong to the i-th category of visual stimuli and the rest of cells in this matrix determine
the other categories of visual stimuli. Indeed, the number of classifiers in this strategy is exactly equal
to the number of categories. As decoding stage, binary predictions, which are generated by applying
the brain response to the base algorithms, are assigned to the category in the coding matrix with closest
Hamming distance.

In order to present an example for ECOC procedure, consider fMRI dataset with 4 categories
of visual stimuli, i.e. photos of shoes, houses, bottles, and human faces. In this problem, 4 different
binary classifiers must be trained in order to distinguish each category of visual stimuli versus the
rest of them (one-versus-all strategy). A 4 x 4 coding matrix is also generated where each diagonal
element represents the positive class of these categories (classifiers). By considering the order of
the coding matrix, each prediction is assigned to the closest Hamming distance in the coding matrix.
In other words, if these classifiers generate the prediction [+1, —1, —1, —1] for a testing instance,
then this instance definitely belongs to the first category of visual stimuli. Similarly, the prediction

[—1,+1, —1, —1] means the instance belongs to the second category, and etc.

5.3 Experiments
5.3.1 Performance Analysis

In this section, the performance of different methods will be evaluated for both binary and multi-
class analyses. In the binary analysis, the performance of the binary ¢1-regularized Support Vector
Machine (SVM) is represented. Indeed, this method is used in [24, 83] in order to distinguish different
categories of stimuli from human brain. As the regularized method that is introduced in [24] for
decoding the brain patterns, the performance of the Elastic Net is also reported in this section. The
parameters for Elastic Net is considered optimum based on [24]. As the method was developed in

[93], the performance of a graph-based approach is also reported. Further, the performance of the

78



Nanjing University of Aeronautics and Astronautics

Table 5.1 Accuracy of classification analysis for evaluating different classification techniques (max=+std)
Datasets {1-SVM Elastic Net MLP Graph-based IABC
R105 16.72£1.89 17.90£0.21 40.86+0.11 30.27£0.41 39.32+0.45
R107 26.39+2.60 26.75£0.97 37.54+0.56 34.71+0.08 39.02+0.17
R232 30.65+0.79 31.68+0.69 40.40+£0.61 36.32+0.31 54.59+0.02
w001 25474036 24.42+0.14 33.73+0.84 31.02+£0.67 36.37+0.59
W002D  61.69+0.86 62.91+£0.79 64.42+0.38 64.81+£0.32 65.24+0.60
WO002P  64.984+0.15 69.55+0.61 72.59+£0.80 60.854+0.70  75.85+0.76
WO005 32.80+0.93 36.13+£0.73 43.09+£0.06 37.40+0.94 49.96+0.36
WOI1ID  41.26+0.13 45.80+0.41 65.53+0.52 70.67+0.82  71.78+0.09
WO011W  31.37+0.54 35.08+£0.68 36.26£0.36 33.71+£0.61  38.1110.42
w017 22.314+0.72 28.20+£0.18 40.36+0.49 43.47+0.53 48.19+0.18
WO052R  54.83+0.17 57.1940.52 65.45+0.66 67.02+0.07 69.29+0.53
WO052W  53.4240.99 55.73+0.04 67.88+£0.37 64.11+0.22  69.87+0.07
w102 52.33+0.46 51.21£0.51 71.20£0.76 51.39+£0.38 75.36:+£0.42
W105 17.7240.10 30.18+£0.39 34.124+0.41 32.06+0.17 37.72+0.93
W107 32.24+1.61 39.37+0.63 48.83+£0.52 50.72+0.05 54.49+0.28
WI116A  56.46+0.19 60.11+£0.41 64.41+£0.90 59.55+0.82 67.93+0.34
WI116V  58.03+0.45 63.63£0.75 67.05£0.00 63.24+0.23 70.51+0.59
w164 50.824+0.15 53.24+0.37 63.01£0.26 57.684+0.51  69.80+0.27
W231 27.66+£0.92 30.09£0.21 60.48+0.17 64.43£0.07 62.62+0.38
w232 29.97+0.46 24.88+0.88 30.35+0.26 39.71£0.91 30.07+0.07

proposed method is compared with Multilayer Perceptron (MLP) that was introduced [23] in order
to decode the brain patterns. We have used the same network parameters that proposed in [23] as the
optimized solution for MLP networks, i.e., two hidden layers with the same size of units. And, the
number of units in these layers is min(7, V'), where T" and V' are respectively the numbers of time
points and voxels in the dataset. All of the mentioned algorithms are implemented in Python 3 on
a PC with certain specifications' by authors in order to generate experimental results. Further, all
evaluations are applied by using leave-one-subject-out cross-validation, except R107 that uses leave-
four-subject-out strategy. As an example, we have selected brain patterns of 5 subjects in R105 for

training a classifier in each iteration and then used the patterns of the rest of the subject in order to test

'DEL , CPU = Intel Xeon E5-2630 v3 (8x2.4 GHz), RAM = 64GB, OS = KDE Neon 16.04.4
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the generated cognitive model. Indeed, not only the brain patterns in training sets and testing sets are
independent across subjects but also fMRI data related to each subject was separately preprocessed
[89]. We have to note that the same training set and testing set are applied in each iteration to all
of the evaluated methods in the whole of this thesis. Table 5.1 shows the empirical studies where
Algorithm 5.9 is directly utilized for binary datasets and our multi-class approach is employed for
datasets with more than two classes. As depicted in this table, the proposed method has achieved the
best performance in comparison with other methods because it provided a better ensemble approach

for analyzing fMRI datasets.

5.3.2 Runtime analysis

This section analyzes the runtime of the proposed method and other classification methods by
employing ROI-based datasets. As mentioned before, all results in this section are generated by using
a PC with certain specifications. Figure 5.3 demonstrates the runtime of the mentioned methods,
where runtime of other algorithms are scaled based on IABC. In other words, the runtime of the
proposed method is considered as a unit. As illustrated in this figure, MLP generated the worse
runtime, specifically when the number of voxels or time points are high such as R232. Since Graph-
based approach must convert the voxel space to the graph space across subjects, it cannot also generate
acceptable runtime, especially for the datasets with more subjects such as R107. By considering
the performance of the proposed method in the previous section, it generates suitable runtime by
partitioning the huge imbalance samples to a set of small balance instances and then creating the
classification (cognitive) model. It is worth noting that runtime of whole-brain datasets has the same

tendency.

5.4 Conclusions

One of the primary goals in neuroscience is how the neural activities in the human brain can
be mapped to the different cognitive tasks? As an interdisciplinary technique between neuroscience
and computer science, Multivariate Pattern (MVP) algorithms employ task-based fMRI images for
extracting and decoding brain patterns. In practice, MVP analysis can formulate as a classification
problem and predict patterns of neural responses, which are generated by distinctive cognitive tasks.

As the final product of an MVP analysis, decision surfaces are defined to distinguish different stimuli
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Figure 5.3 Runtime Analysis

in the human brain. Decision surfaces can be used to understand mental diseases. However, im-
proving the performance of prediction is so hard because task-based fMRI datasets can be considered
as the imbalanced classification problems. For instance, consider collected data with ten same size
categories. Since this dataset is imbalance for (one-versus-all) binary classification, most of the clas-
sical algorithms cannot provide acceptable performance. This section proposes IABC framework for
decoding different stimuli in the human brain. This framework uses a new binary imbalance Ad-
aBoost algorithm as binary classification approach. It can increase the performance of prediction by
exploiting a supervised random sampling and the correlation between classes. In addition, this algo-
rithm is utilized in an Error-Correcting Output Codes (ECOC) method for multi-class prediction of
the brain responses. Empirical studies show the superiority of our proposed method in comparison

with state-of-the-art approaches.
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Chapter 6. Conclusion

One of the greatest challenges in our century is understanding how the human brain works. As
an interdisciplinary field of study, computational neuroscience can break neural codes by employing
different concepts from the mathematics, physics, psychology, psychiatry, and machine learning. In
this thesis, we focus on developing modern machine learning approaches for the different levels of
analyzing the neural activities. We first discuss the current challenges for decoding the human brain
and then introduce novel techniques for improving this procedure. These techniques have a wide
range of real-world applications from exploring novel treatments for mental diseases to creating a
new generation of the user interface.

In Chapter 2, we proposed two techniques for functional alignment. Firstly, we develop Deep
Hyperalignment (DHA) as a novel unsupervised approach for functional alignment. DHA is not lim-
ited by a restricted fixed mapping function because the kernel in DHA is a multi-layer neural network
that can separately implement any nonlinear function. As a supervised alternative, Local Discriminant
Hyperalignment (LDHA) method is introduced, where it incorporates the idea of Local Discriminate
Analysis (LDA) into CCA for improving the performance of the hyperalignment solution. In this
chapter, we illustrate that while DHA can improve the performance of binary analysis, LDHA depicts
better performance for multi-class datasets.

In Chapter 3, we propose novel feature analysis techniques. In fact, the proposed approach es-
timates a snapshot of brain image for each stimulus rather than analyzing whole of the time series.
While the classical methods just can extract features from voxel space, the proposed method selects
a subset of time-points for analyzing the neural activities. In practice, these snapshots are selected by
finding local maximums in the smoothed version of the design matrix. Finally, we propose two learn-
ing approaches. Indeed, extracted features can be analyzed by using both unsupervised learning and
supervised learning. This thesis proposed a cluster ensemble approach in order to apply unsupervised
learning, where similarities or distances between neural activities can be compared across subjects.
As the supervised alternative, we develop a bagging technique by using binary ¢1-regularized SVM

classifiers, where they are generated by utilizing each of neural activities in the level of anatomical
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regions. The main contribution of this method is that it can decrease the sparsity of fMRI datasets.

In Chapter 4, we introduce Deep Representational Similarity Analysis (DRSA) as a novel deep
extension of RSA method to analyze similarity for both within a dataset, and across different datasets.
Like DHA, DRSA also employs a deep network as the kernel function that maps nonlinear neural
activities to a linear information-rich embedded space and then evaluates the similarities (or distances)
between the mapped features. In addition, DRSA uses a new regularization term for making a trade-off
between correlation and covariance of distinctive cognitive tasks. Since DRSA uses gradient-based
optimization approaches, it is time efficient for evaluating high-dimensional fMRI images, such as
whole-brain datasets. In the end, we evaluate the similarity of different datasets in this chapter, where
the datasets related to each type of cognitive tasks (visual stimuli, decision making, and flavor) have
more within-category similarity in comparison with distinctive cognitive categories

In Chapter 5, we develop a modified version of imbalance Adapting Boosting (AdaBoost) algo-
rithm for binary classification. This algorithm uses a supervised random sampling and penalty values,
which are calculated by the correlation between different classes, for improving the performance of
prediction. Indeed, this method is well-suited for one-vs-all classification analysis. Then, we focus on
multi-class learning approach. Here, we utilize Error-Correcting Output Codes (ECOC) as an indirect
multi-class approach in order to extend the proposed binary classifiers for the multi-class prediction.
Empirical studies show the superiority of our proposed methods in comparison with state-of-the-art
learning approaches.

Besides the theories and the empirical studies in the thesis, we also make our research easily
reproducible and open to the public. We have created a GUI-based toolbox for running the standard
pipeline of analyzing task-based fMRI images, including the proposed methods in this thesis, that is
available athttps://easyfmri.github.io. Moreover, we have also prepared a data repository for
sharing task-based fMRI datasets. This repository is available at https://easyfmridata.github.

io.
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Appendix A. Datasets

In this section, we introduce datasets that are employed in this thesis. Here, we use two group
of datasets, i.e., Region of Interests (ROI) based data, and whole-based datasets. Indeed, we analyze
some parts of brain images in ROI-based data, where these parts are manually selected based on the
original papers of each data. In this thesis, we use ‘R’ prefix for the ROI-based dataset. By contrast,
whole-brain datasets include all of the neural activities in the brains, where the images are registered
to a standard space, i.e., Montreal Neurological Institute (MNI) 152 space 1T'1 with voxel size 4mm
[19]. Further, a ‘W’ prefix is used for denoting whole-brain data. While the ROI-images enable us
to analyze the neural activities in the specific loci, whole-brain data can be used to figure out what
information is represented in a region of the human brain and how that information is encoded. Since
the number of selected features (voxels) in the ROI is significantly smaller than the whole of voxels
in a fMRI image, the runtime of algorithms by utilizing ROI-based datasets are rapidly faster than
whole brain datasets.

Table 1 illustrates the technical information of the employed datasets. In dataset 001, subjects
perform the Balloon Analog Risk-taking Task in an event-related design, where we analyze the whole-
brain neural activities. For more information, please see [111]. In dataset 002, subjects performed
a classification learning task with two different problems, using a ‘weather prediction’ task. In the
probabilistic problem (002P), the labels were probabilistically related to each set of cards. In the de-
terministic problem (002D), the labels were deterministically related to each set of cards. More tech-
nical information can be found in [112]. In data 005, subjects were presented with mixed (gain/loss)
gambles and decided whether they would accept each gamble. No outcomes of these gambles were
presented during scanning, but after the scan, three gamblers were selected at random and played for
real money. Please see [113] for more information. In dataset 011, participants were trained on two
different classification problems. To measure how well participants had learned under each condi-
tion, without feedback task (denoted by 011W) was presented during the probe block, and all items
were presented under single-task conditions. As the next task, subjects learned the categories based

on trial-by-trial feedback. After training, subjects received an additional block of probe trials using a
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Table 1 The datasets.

Title ID Task Type S P T Vror Scan TR TE
Balloon Analog Risk [111] 001 decision 16 4 8% - S 2000 77
Deterministic classification [112] 002D decision 17 2 356 - S 2000 20
Probabilistic classification [112] 002P decision 17 2 356 - S 2000 20
Mixed-gambles [113] 005 decision 16 4 714 - S 2000 30
Dual-task weather prediction [114] 011D decision 14 3 408 - S 2000 25
Weather prediction without feedback [114] O011W  decision 14 4 236 - S 2000 25
Selective stop signal task [112] 017 decision 8 6 546 - S 2000 ~25
Reversal weather prediction [115] 052R decision 13 2 450 - S 2000 20
Weather prediction [115] 052W  decision 13 2 450 - S 2000 20
Flanker task [39] 102 decision 26 2 292 - S 2000 20
Visual object recognition [78] 105 visual 6 8 1452 2294 G 2500 30
Word and object processing [108] 107 visual 49 4 322 422 S 2000 28
Auditory odd ball [116] 116A audio 17 2 510 - P 2000 20
Visual odd ball [116] 116V visual 17 2 510 - P 2000 20
Stroop [117] 164 decision 28 2 370 - S 1500 10
Integration of sweet taste [118] 231 flavor 9 6 1119 - S 2000 30
Face-coding localizer (objects) task [7] 232 visual 10 4 760 9947 S 1060 16

S is the number of subject; P denotes the number of stimulus categories; T is the number of scans in unites of TRs
(Time of Repetition); Vro; denotes the number of voxels in ROI; 19742 voxels are extracted from MNI 152-7'1-
4mm space [19] for all whole-brain datasets. Scan(ners) include G = General Electric, P=Philips, or S=Siemens
in 3 Tesla; TR is Time of Repetition in millisecond; TE denotes Echo Time in millisecond; Please see https:

//openfmri.org for more information.

mixed event-related fMRI paradigm, during which they classified items that had been trained under
dual-task conditions (denoted by 011D). More technical information can be explored in [114]. In
dataset 017, subjects performed selective stop-signal classification, where the technical information
can be found in [112]. In data 052, participants performed two blocks of an event-related probabilistic
weather prediction task (denoted by 052W). Next, they performed two more blocks of the same task
with the reward contingencies reversed that is defined by 052R. For more information, please see
[115]. In dataset 102, subjects performed a slow event-related Eriksen Flanker task. On each trial,

participants used one of two buttons on a response pad to indicate the direction of a central arrow
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in an array of 5 arrows. In congruent trials the flanking arrows pointed in the same direction as the
central arrow (e.g., < < < < <), while in more demanding incongruent trials the flanking arrows
pointed in the opposite direction (e.g., < < > < <). Participants performed two 5-minute blocks,
each containing 12 congruent and 12 incongruent trials, presented in a pseudorandom order. Tech-
nical information can be found in [39]. In data 105, participants watched eight categories of visual
stimuli, i.e., faces, houses, cats, bottles, scissors, shoes, chairs, and scramble patterns. The neural
activities for this dataset not only is analyzed for whole-brain images but also we collect data from
the temporal cortex (VT) as ROI-based data. More information is denoted in [78]. Dataset 107 is also
related to the visual cognitive tasks. Here, subjects performed a visual one-back with four categories
of items, 1.e., written words, objects, scrambled objects and consonant letter strings. Further, ROI for
this dataset is selected based on the main reference [108]. In data 116, subjects performed separate
but analogous auditory and visual oddball tasks (interleaved), while we recorded simultaneous EEG-
fMRI. This thesis has only used fMRI images. For more information, please see [116]. In dataset
164, subjects performed the color-word version of the Stroop task with three conditions, including
congruent, incongruent, and neutral. Participants were instructed to ignore the meaning of the printed
word and respond to the ink color in which the word was printed. Each condition was meant to elicit
a certain level of attentional demand. Participants responded to ink color by pressing a button under
the index, middle, and ring fingers on their right hand. One button for each color (red, green, and
blue) on an MR-safe response box. More information is denoted in [117]. In dataset 231, non-caloric
beverages were mixed with new flavors, citric acid, sucralose and food coloring. Subjects with three
similarly liked but differently flavored and colored beverages who were unable to detect maltodextrin
participated in six exposure sessions during which each beverage was consumed six times consis-
tently paired with one of three caloric loads (0, 112.5 and 150 kcal). A fMRI session followed in
which participants sampled the non-caloric versions of the three exposed beverage (CS-, CS112.5,
and CS150), as well as a tasteless and odorless control solution. Technical information can be found
at [118]. Finally, data 232 measured human fMRI responses and psychophysical similarity judgments
related to four categories, i.e., objects, faces, places, scramble photos. This thesis analyzed the neural
activities of dataset 232 in two different forms, i.e., whole-brain data and the fusiform face area (FFA)

as ROI region. More information is denoted in [7].
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Appendix B. Preprocessing Steps

This section briefly explains how datasets are preprocessed in this thesis. As mentioned before,
we have developed a new toolbox called ‘easy fMRI’ for analyzing fMRI datasets (see Figure 1).
This toolbox automatically generates preprocessing script for each fMRI session, and then frequently
executes these scripts by using ‘FSL 5.0.10° (available at https://fsl.fmrib.ox.ac.uk). As the
first step, all files of each dataset are structured in Brain Imaging Data Structure (BIDS) format [119].
Then, we have utilized the technical information (such as TR, FWHM, etc.) extracted from the original
paper of each data for generating the preprocessing script in easy fMRI. Finally, our toolbox has
applied the preprocessing steps to the raw fMRI images, including anatomical registration, motion
correction, non-brain removal, spatial smoothing. Indeed, we have used Linear Image Registration
Tool (FLIRT) algorithm [120] to anatomically register fMRI images to the Montreal Neurological
Institute (MNI) 152 standard space [44, 45]. After that, MCFLIRT method [95] and BET technique
[121] is respectively employed to apply motion correction, and removing non-brain tissue from the
raw images. As the final step for preprocessing, fMRI images are smoothed by using a Gaussian kernel
of FWHM 5.0mm; grand-mean intensity normalization. Figure 1 compares raw and preprocessed
fMRI images. Further, we have manually applied the temporal alignment, including the same number

of time points are selected for all subject in each dataset.

easy fMRI ’

Figure 1 (left) a screenshot of easy fMRI toolbox (middle) A snapshot of raw fMRI image (right) A snapshot of
preprocessed fMRI image
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Appendix C. FAHPIHE

H BIEA SR A RIS 27 > Ul P i — A BOR Ak A2 A IE A M BR AR N i) A%
T, oo R EUAEL L CAZFI T S DI BRI SRR BE I FE R L B SO SR K&
%o THREPERZ 52 BN N —Fh R SR BEDS HI R FR N 2 B 2 Th 3l , H 3 2R A A
XEEZARR R R A AR . Fe52 b, ERX AR E R, AT AR T AR I IX
BITIRE, T HABIS AT 5Tk L8 e T (R B (S B DA SOZAE B i 4t iy . #h &G sl ml
PAMAS 2 T e T 04, Horh e R B R A2 R0 1 AN [ I RIAE 55 Z (] AR (L (22 5 1E)
PRSI A el 22 15 80, X REAS Y BhFRA T IR N NI A dERS H B 6T 7
(K o

MG ] DT R Z AT 08T, BEZDBRE T B0 R BN AUE 55 Z (R A
A (BZE 5 ) o S T ISl 2805 3l , W] DAGE AN IR i 05 =X, B A 0622155 (Event-
Related Optical Signal, EROS) , 1EHLF &5 Wr/Z434 (Positron Emission Tomography, PET) ,
FYGET R EHTENLEZ 4 (Single-Photon Emission Computed Tomography, SPECT) , i#T4I
A% (Near-Infrared Spectroscopy, NIRS) | Jiifiz &l (magnetoencephalography, MEG) , i 2
JZHL® (electrocorticography, ECoG), JixiHL[&l (electroencephalography, EEG), Ifjfems LR ik
1% (functional Magnetic Resonance Imaging, fMRI). 15 K ZHSE IR —FE, A8 30/ 23
fMRI B, %37 A 35 147K FAKHi (functional Magnetic Resonance Imaging, BOLD) %
FOARE DAy o it ) J3E e o DM B e 22 T gy o 2 S REVARURE AR D o 5 3l e ) 2 808l o B B
FEo SEPr b, IMRIEFRATRERS ) R 7R AR R NHE B I s A1 245 I8 DA S X e 3
BTGS2 1) KIS BE 24 . ] MRT $ERDE AR AU A7 A 2 2L
R B, Er—MHERAMBUR AR . 5HABIRRAEM AR TARMLL, Bk AR H
RA I 2P A TR EIEA .

MATEBN AT AL R A 70, AR RIES N, B85S, BT R, 78
fMRI $flder, MEmEamE RAEE (RNEGTRERTCER) . AR
DM 4EFI R R s A, wlas i MR Y, (45 B4 IX . (Region of
Interests, ROL) H1 17N AN [i] g A1 1000 AMAZKR ) AT HT 6000 4= [i) iy ) £ . SEFx |,
B R 205 SN e i e RS R R R ) R BRI, BT X REYRR

98



Nanjing University of Aeronautics and Astronautics
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2] YT ) SIS [ A ) A

Z W MR e AR rF i — > B PR . S2bs b, Z2900# MR ]
B ITHERE Z [BIXF55, PAEZE 8 F AR (B 0 22 51 BOR EAPIAD 2 2R HETIT Y, ds A
PREEFRCER T RBAHE , EATTRT DAMRE T AE . SR, AR BREEH R E H e BR M = v
HIHREX BRI, TEARFAE AL EA A R0 Z [ A R o THREXS SR ZATI X 55 MRI
KGN ITE. X B, FATZ SR — DI FE e i s8], (A5 R AR KM
o KAk, I HAE R ARSI B2 B EA B R Ry . Teii B, Shsesm) il e g
A, ORIERE TR IS A 22 1R

273w (Multivariate Pattern, MVP) 7@ fh &R ENRI 2 RIS G, B
AT PATE A Y ] A3 280 VR AR ORI RS OB =X st b, B R DATHN -5 AN (R HLIR ZSAH 1)
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BN, MVP 202 F0ATRENS T AR 0 Q0 Ar] 42 A A AL B ER (R 303 A, MVP 23258 F AL
ar S R AR AT 0 28, R 2R B 5 S SR A A G B . A 28 A &
Feras[a)rpog SCIXTR], - DXTA] e ) e i 37 [ 2 Rn AR R 28 5 8., PIAnRiEse s, A A2
5 RREEGARIRES . Bk v DA TSR BRI B TR, S 2 n] A — A A
Ifi .

MVP 532534 8 Se i B ) o A sr i I R AR EE 5 . RS, eGR4 3R
A 7 i A 28 S R ) e Pl ALk DA P R SRR o AN ] S0 1 DX R Z ) ) S PR Ry e ST
SRIG A SR I 2R A R S TRREZ AR, R A AU S T
Fetntill gk, WIRLERTALIE . Feag, XA DN e bV fo AR v 2% 1 b i DX [E] A 7
4328, BIETAL X R E 35 .

Sy JEARIETR B IR 2 2RI m B E A e A A TRIE R M, T RAXT 2> 2R A RE
BT RS KR PPN . IRVEHEFE R RS0 A N A 0 2RI, A KA 2R
PEANE S o WS R R A REAS TR AP LU S5 1 dpcfy X | B AR (5 B, . P DA 3R AR
A4 (Representational Similarity Analysis, RSA) H 8 HoAth 5 ¥E - HiX (5 5. .

YEH IMRI 3T EEA T VA Z —, RSA PEAL BRI WA AR 55 Z (B AR AP (B
B9) . RSA K 3R 23 [B] PN 56T B ] 2 [B) PR B RR G548« I nAILgs2 > i RS0 #r
JI A M 7 ] X6 2 ) 1 50 RS R B AR BRI AH S BEAR R (Dissimilarity Matrix, DSM) . Q4§ MVP
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SR TAFESAE T AR R T EARN, (HRSA M T EMZEMMHEXR . XFE
AAIAEA . 58, RSA WRME/RA RN X B FAEA, RIE MVP 2 S 28 Ik 2
T O = QI T 1) VA [ B = SR VA WS S (1A Y R 2 1 == ol 1 T R 2 EX - N
[E] R T UTTEAR BRAEAL T AU T RAAE AR AR A% =X 56 =, RSA W DALCEBIA [ W) Rh s 1 22 1%
3o RSA HARM TG U BN T REQIBAT AR, I Hah i H5d BE4> RSA ikt
HE . Ik, RSA FARYEHH EACERS .

WETTAER, AMHESTZE ISR EIE SRS T BUS 7« —Se s Rpygte, SR, 598
AU KIFEAER PR, o 3% 29008 By S RERTHE . A FI IR RFIE R R . Teii
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[ JZ A AR AR, = Dk aT AR

1. fMRI W52 JEHSE MVP Zp b i) — A 2Pk e i ) 2 ol didnte . — i, 2l
I MTR T IR UE SR A5 R A R R B R E R, 75—, 240 MR Bd)s 70 s 24
NP B A 23 ) 2 [ A T R Y S e A AR BRES AR, DAMAR S e A SR IR 25 SR A
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KeE . QIETATIE, FEA P, RIS A HERI D BEAHE , BT A— & . &
PRESHAHE 2R I 4548 MRI G (Bt , BT ASREHRME) A TRUMER i IO, e
Talairach X5 . SR, T IRANGEERAR, A R B R X R RN TAR AN A # 2
A o SEF5 b, FE1F 2 IMRIWFSE AR BREEAASHEA T I B AP 3R . AL Z R, DIREAR
P P LR A (R i pe 22 m B o ARG HE (Hyperalignment, HA) /& 5535 44 (1) Y fig
W2 — o TEA: B RHE AT DA BLAUA 56 43 A (Canonical Correlation Analysis, CCA)
o, B, nRARE AT 280 MR 5T A HE & A 2 A IR e A .t TR AT G
B CCA AR MFUERCHE AT, PRI AT BETCIEET X MVP Wiz g . 4t i
P, CCA SR B — AW R B RAL T A W& TEAH R I ) s S E TR 3 (R RZIK) Z )
FRRH S, IRT B A KA R 2R R (R A [ —2851) Z [RIRAH M, I HLIH R AN [ 2531 )
B TR ek . SeBr b, SORALAREE 2T TR DL, BIAN, AR 53285 M b B et A
543 #r (Linear Discriminant Analysis, LDA) T A& 3 5343 #r (Principal Component Analysis,
PCA) , ot 340 50153 B (88 FH 78 G 2R AR 25 2 0 HEHA5 B BORE AR 22 T] R RE (DL P R ik gk 43 26
TERTERE . RATE et th T —FpFR A R A BB AL HE (Local Discriminant Hyperalignment,
LDHA) 1 BH R ME T, R Rl A 50434 (Local Discriminate Analysis, LDA) RSl &
3| CCA A HE R . S6Pr b, Rl Al S 2 BT IR i g il (3R
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B2 ) R SR, D518 S AR R R PN, B 28 AR I di e ) 2 )
VA B AR 28 R RIS [F) 28 RV &, SRS FRAT IR A2 P 4RI TR A 6 P9 ELft
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Descent, SGD) #ATIiAL . 4B YILREFH) DHA Bz H 2B sl & Bl LIk, AT EaiAl
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ROL, J—J7, & LR ROI 2B AR MVP J7IARIPERE . 73— DB BIF7E R 1l
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TEHRAEE TR RIS ITET . e — PO R r L, A PLdE T 5oR, MVP

101



Functional Alignment and Feature Learning with Neuroimaging Data

R R B 2R R BUES R, A, MEREZARERR B A G R SIAFIRESZ
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Ty ZER R, DAY RSA IR, 24107 2245 FE 35 AR5 L (Signal-to-Noise Ratio, SNR)
I, AR TR E . SR R, — SRR RSA D7) DU RER
fEhix sk —, DI RSA (Bayesian Representational Similarity Analysis, BRSA) K
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Algorithm for Regression, OSCAR) A 7MY ¢1 (Ordered Weighted /1, OWL) . {E R I3
IR, X L8 SR A HARHIEZ [ K R Ak o AT & TIREFRAEA M4 (Deep
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P AdaBoost 4335 (Imbalance AdaBoost Binary Classification, IABC), DAEZF 45 IMRI 4y
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e, BESRm R R R S 2ECRE se e A . TEMRI T B, TR A i 1 R R A
VRIT AR G 7 S0 4 o0 B 4 B AT de %3 Hamming 8125 0% 9 i AR R P 28 531

XF 20 FhAS ] Y LS 48 5 AU SR A TR SE IR MIF ST IESE , B th T YRR PR RE AT 2L
BLMAHERE . B 7SO P EeMsEuEp Rz oh, JATiaeaE 7 — N ETEIEH PR
T (Graphical User Interface, GUI) i) T HARMASWIFE 2 T HIIF 10 A RTF, % LHAE LAz
FrafEA SR T RAE N R TR S 19 IMRL K@ ikpodsdEim e, H ez LHRAE
{E https://easyfmri.github.io E/VFF. MAh, FRATASRREE T — MR CEH T =4S
FrE B PESE , Z)ENIT https://easyfmridata.github.io.
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