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Functional Alignment-Auxiliary Generative
Adversarial Network-based Visual Stimuli

Reconstruction via Multi-subject fMRI
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Abstract—Functional Magnetic Resonance Imaging (fMRI)
provides more precise spatial and temporal information to
reconstruct stimulus images than other technologies that can be
used to measure the human brain’s neural responses. The fMRI
scans, however, generally show heterogeneity among different
subjects. The majority of the existing methods aim primarily at
mining correlations between stimuli and evoked brain activity,
disregarding the heterogeneity among subjects. Therefore, this
heterogeneity will impair the reliability and applicability of multi-
subject decoding results, leading to sub-optimal results. The
present paper proposes the functional alignment-auxiliary gen-
erative adversarial network (FAA-GAN) as a novel multi-subject
approach for visual image reconstruction that employs functional
alignment to alleviate the heterogeneity between subjects. Our
proposed FAA-GAN includes three key components: 1) a genera-
tive adversarial network (GAN) module for reconstructing visual
stimuli, which consists of a visual image encoder as the generator
that uses a nonlinear network to convert stimuli images into an
implicit representation and a discriminator that generates the
images comparable to the original images in detail; 2) a multi-
subject functional alignment module, which is used to precisely
align the individual fMRI response space of each subject in
a common space to reduce the heterogeneity among different
subjects; and 3) a cross-modal hashing retrieval module used
for similarity retrieval of two modalities of data, i.e., the visual
images and the evoked brain responses. Experiments on real-
world datasets show that our FAA-GAN method does better
than other state-of-the-art deep learning-based reconstruction
methods with fMRI.

Index Terms—Functional Magnetic Resonance Imaging, visual
image reconstruction, multi-subject analysis, functional align-
ment, generative adversarial network

I. INTRODUCTION

HUMAN brain comprehension has been one of the chal-
lenges that needs urgent attention for a long time [1]–

[4]. Human brain mapping and decoding is an interdisci-
plinary field of study that explores how the brain performs
different cognitive functions [5]–[7]. The key idea behind
brain decoding is to identify cognitive states through the
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measurement of neural activity [8]–[10]. Functional Magnetic
Resonance Imaging (fMRI) is an imaging technique that has
made tremendous advancements in the area of human brain
research. Brain decoding is made possible by fMRI’s ultrahigh
spatiotemporal resolution, which can provide more accurate
information for neural activity analysis by using blood oxygen
level dependent (BOLD) signals as a surrogate for neural
activity visualization [6], [11]–[13].

Despite the enormous advancement of machine learning
technologies, which has enabled excellent decoding results,
detailed information about visual stimuli is still ignored due
to classification task limitations. Researchers use visual image
reconstruction to better understand human minds and display
more details. Thirion et al. [14] published a preliminary
work reconstructing dot patterns from both seen and imagined
images using rotating Gabors. The visual cortex’s retinotopy
was used to deduce the visual information of real or imagined
scenes from the neural responses they elicited. Individuals’
BOLD signals in the early visual cortex were recorded when
they were presented with the stimuli of flashing checkerboard
images. A multi-scale local image decoder was developed to
reconstruct perception. Inspired by the pioneers, scientists did
a series of studies [15]–[19] and made a great contribution
to this field. With the rapid development of deep learning, a
number of deep neural network (DNN)-based methods have
been proposed for reading people’s minds. Some studies have
used DNN outputs to shed light on how the human visual cor-
tex actually works [20]–[23]. However, no matter conventional
machine learning or deep learning methods, most of them
neglect the heterogeneous patterns in multi-subject datasets,
which is one of the difficulties that need to be overcome in
the study of human cognitive analysis [11], [24]–[26].

Aligning fMRI data from various subjects is necessary
for multi-subject cognitive analysis tasks. This is done to
overcome the heterogeneity that exists across the subjects [11],
[13], [25], [27]. This alignment problem can be viewed as
multi-view representation learning from a machine learning
perspective [25], [27]. Indeed, functional alignment is based on
the idea that there exists shared information among subjects,
and neural data alignment means pulling out this shared infor-
mation. On the other hand, the goal of functional alignment
is to perfectly align the response space across subjects.

Herein, we propose a novel stimuli reconstruction method,
functional alignment-auxiliary generative adversarial network
(FAA-GAN), to reconstruct visual stimuli from multi-subject
brain response patterns. To address the heterogeneity in the
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fMRI data from various subjects, we add a functional align-
ment module in our reconstruction model to align the response
patterns in a common latent space. The proposed FAA-GAN
is comprised of three main components. Firstly, for visual
stimulus reconstruction, a GAN-based module is covered.
For the generator, we pretrain an image autoencoder, whose
encoder maps the stimulus images to a latent space and the
decoder can be viewed as the generator that reconstructs
the visual images. Simultaneously, reconstructed images are
made to look as close as possible to the originals using the
discriminator in our GAN module. The second part is the
multi-subject functional alignment module, which is utilized
to align each subject’s neural response in the common space
accurately. The third part is the cross-modal hashing retrieval
module used for similarity retrieval across the stimuli and the
brain response patterns.

The major contributions of this paper are listed as follows:
• We propose a novel visual stimuli reconstruction method

that reconstructs visual images from different subjects’
brain activities. Our method not only focuses on cross-
modal data reconstruction but also considers the hetero-
geneity across subjects. We add functional alignment as a
module of the method, where the parameters are learned
and updated during the model training.

• We introduce a cross-modal retrieval module to estimate
the correlation between visual stimuli and resulting re-
sponses. Given a response pattern, the most associated
(corresponding) features of the image could be retrieved.

• We evaluate the proposed FAA-GAN method via two
different datasets, one for natural image reconstruction
and one for character reconstruction. When compared
to other state-of-the-art deep learning-based approaches,
FAA-GAN delivers the best reconstruction performance,
as shown by experimental results.

II. RELATED WORK

A. Visual Image Reconstruction

Compared with brain decoding, i.e., the classification tasks,
reconstructing stimulus images remains an enormous chal-
lenge. Researchers have explored visual stimulus reconstruc-
tion, which may be separated into conventional machine
learning and deep learning methods. For conventional meth-
ods, inspired by [28], Bayesian reconstruction models were
developed to study fMRI voxel correlations that naturally
reflect visual stimuli. Naselaris et al. [15] established a
Bayesian framework that exploits the structural and semantic
characteristics of encoding the activities of the human brain
to more accurately depict the spatial structure and semantic
categories contained during image observation. Nishimoto et
al. [16] suggested a Bayesian decoding approach to speed
up fMRI data acquisition. They devised a motion-energy
encoding paradigm to overcome fMRI BOLD signal latency.
However, these methods don’t look into how the stimuli and
the neural responses are linked. To automatically acquire
knowledge of image databases, according to the Bayesian
canonical correlation analysis (BCCA) model proposed by
Fujiwara et al. [17], each module is expressed by a latent

variable that is linked to a distinct subset of pixels. On the basis
of 2D images, by constructing contrast-decoding, disparity-
decoding, and contrast-disparity decoding models, Zheng et
al. [29] reconstruct 3D contrast images from fMRI data in
visual regions.

In the previous decade, deep learning-based stimuli image
reconstruction achieved exciting progress. For example, in
[21], [30], Du et al. proposed the deep generative multi-view
model (DGMM), which is a nonlinear version of BCCA. Shen
et al. used fMRI and visual images to train a DNN model in
[22]. One of the main contributions of this research is the
development of an end-to-end model that can directly link
neural responses with external visual stimuli. Besides, Du et
al. [31] utilized a hierarchically structured framework with
multi-task transfer learning of DNN representations and the
matrix-variable Gaussian prior for neural decoding.

Meanwhile, several GAN-based methods have been pro-
posed, significantly improving the accuracy of reconstruction
performance [20], [32], [33]. For example, a GAN-based
framework was proposed in [33] that learns a generative
model of visual stimuli that is conditioned by observations of
neural responses. Additionally, Seeliger et al. [33] proposed a
deep convolutional generative adversarial network (DCGAN)
method employing adversarial training to reconstruct arbitrary
natural images. DCGAN can be trained independently on siz-
able image datasets and learn the hidden space unsupervised.
Recently, more and more GAN-based methods have been
proposed as a result of the technology’s rapid development
[4], [34], [35]. However, most of the existing methods use
multi-subject fMRI data for visual stimulus reconstruction
while neglecting the heterogeneity across different subjects,
which will affect the stability and robustness of the model’s
performance. In this paper, we propose a new method that
not only reconstructs visual stimuli with high accuracy using
a GAN-based framework, but also takes into account the
differences between subjects by mapping the fMRI responses
of different people onto a common space.

B. Multi-Subject Functional Alignment
As an extremely important study of functional alignment in

the initial period, Haxby et al. [11] developed hyperalignment
(HA), a technique that standardizes the high-dimensional envi-
ronment in which brain responses from different people occur.
Following Haxby, a slew of studies have offered numerous
improved techniques for improving hyperalignment accuracy.
Xu et al. [24] presented regularized hyperalignment (RHA) to
discover optimal regularization parameters. They found that
the regularization parameters control how each normalized
dataset’s singular vectors are weighted, and altering them im-
proves classification accuracy. The non-linear transformation
in the embedded kernel space can be accomplished with the
help of the kernel hyperalignment (KHA) technique described
in [12]. When the number of individuals increases, the chal-
lenge of HA shifts, and KHA is able to address both the
voxel and feature expansion difficulties simultaneously. Chen
et al. proposed a series of important methods for functional
alignment. First, they proposed the singular value decom-
position hyperalignment (SVDHA) [27] and joint SVD was
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Fig. 1. The schematic diagram of the proposed functional alignment-auxiliary GAN method. Three main components are included in the proposed model,
i.e., (a) the generative adversarial networks (GANs) module for image reconstruction, which is in the dotted green area; (b) the multi-subject functional
alignment module for aligning the fMRI response onto a common space, which is in the dotted blue area; and (c) the cross-modal retrieval module for
similarity retrieving across different modalities of data, which is in the dotted yellow area.

used for decomposing the response matrix. The subjects were
then aligned in a new feature space with fewer dimensions
via the HA method, which speeds up calculations without
sacrificing accuracy in classification. Additionally, they devel-
oped a shared response model (SRM) [36], a unique trans-
formation for the probability principal component analysis
(PCA). Specifically, the loading matrix is subject to orthogonal
constraints. With SRM, the size of the shared feature space was
also reduced. In addition, a convolutional autoencoder (CAE)
method was developed as a nonlinear technique for use with
whole-brain fMRI data [37]. As a parametric kernel model,
a method named deep hyperalignment (DHA) was developed
by Yousefnezhad et al. [25]. Nonlinear issues were resolved
via DHA, while the classification prediction performance
was also improved. Further, they also suggested supervised
approaches, local discriminant hyperalignment (LDHA) [13]
and supervised hyperalignment (SHA) [26]. It is possible for
stimuli from the same category to be more correlated with
one another and for stimuli from other categories to be less
associated with one another in the shared spaces, thanks to the
use of the supervised technique.

III. PROPOSED METHOD

A. Notations

Let X = {xtd} ∈ RT×D, t = 1 : T, d = 1 : D be the
images presented to the subjects in the visual tasks. T refers
to the quantity of images and D is the dimensions of each
image. Here, we assume that the images used in a same visual
task have the same size. In our multi-subject fMRI data, we
let S be the number of subjects. For the i-th subject of S
subjects, the brain neural responses are denoted by Y (i) =

{y(i)tv } ∈ RT×V , i = 1 : S, t = 1 : T, v = 1 : V , where T is
the number of time points in units of Repetition Time (TR),
V is the number of voxels, and y(i)tv denotes the brain neural
responses of the i-th subject in the t-th time point and the v-
th voxel. Furthermore, we use Y = {Y (1),Y (2), . . . ,Y (S)}
to represent the neural responses in all the subjects’ brains in
the dataset. In our multi-subject visual image reconstruction
task, there are two assumptions, i.e., 1) the images and evoked
brain activities are pairwise samples, which asserts that there
are the same number of images and neural responses, so we
use the same T in our paper; 2) it is assumed that the training
set’s stimuli are already aligned in time, i.e., all the subjects
watch the same stimuli image at any t-th time point.

B. Functional Alignment-Auxiliary Generative Adversarial
Network (FAA-GAN)

We develop a multi-subject visual image reconstruction
method, which aims to generate seen images through different
subjects’ brain neural responses. In our proposed method, two
distinct modules for visual images and multi-subject response
patterns map two different modalities of data into a common
latent space, respectively, and the GAN architecture recon-
structs the visual images. Fig. 1 is a simplified representation
of our FAA-GAN method. Specifically, the proposed model
consists of three main modules, i.e.,

1) the GAN-based module for image reconstruction, which
consists of a pre-trained auto-encoder and a discriminator. The
encoder maps the input image features X into latent image
features x̂t on a latent space z, and the decoder can be viewed
as the generator that reconstructs the latent features x̂t to the
reconstructed images x̃t. The discriminator is used to make
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the reconstructed images x̃t similar to the original inputs X;
2) the multi-subject functional alignment module, which is

used to align each subject’s neural response in the common
space accurately. For functional alignment, the response neural
of each subject Y (i), i = 1, 2, . . . , S is input to the network
f`(Y

(`); θ(`)), then rotated to the common space G via the
transformation matrixR(`), the aligned neural features ˆY (`) =
f(`)(Y

(`); θ(`))R(`);
3) the cross-modal hashing retrieval module is used for

similarity retrieving across two modalities of data, i.e., neural
responses and images. In this module, the latent features
(x̂t, ŷt) are encoded into the hash code (xht ,y

h
t ). We learn

the relationship between xht and yht and retrieving the most
related hash code from one modal to the other.

During the model training, the visual images and the fMRI
data from different training subjects are input into the im-
age encoder and different networks for functional alignment,
respectively. Then the image encoder maps the images into
image latent space z and the output of functional alignment
is the common response space G, and the transformation
matrix. We combine the two cross-modal latent spaces into
a common space via the cross-modal retrieval module to learn
the relationship between the stimuli and the brain response
patterns. The trained image latent features are sent to the image
generator as input, and the output is the reconstructed image.

During the testing, we only use the activity patterns of the
test subject as the input. Specifically, the common space is
learned in the training phase. Then, for the unseen subject in
testing and practical applications, we will find a transformation
to map the unseen subject into the learned common space.
Via the trained cross-modal retrieval module, the most relevant
image features will be retrieved based on the response patterns.
Next, the trained image generator takes the image latent
features as input, and reconstruct the visual stimuli. The
functional alignment provides more robust and generalized
results in the field of multi-subject analysis, which could be
adapted to more application scenarios.

1) Visual Image Generative Module: Due to the visual task
limitation, only a small number of related samples could be
used for network training. To pretrain an autoencoder and
increase its performance, we refer to [33] and our previous
work [35]. After autoencoder pretraining, the image encoder
network maps the seen images to the latent space z, and
the latent features x̂t = Eθ(xt), where E(·) is an encoder
function, and θ is its parameter. For the decoder network, the
reconstructed image x̃t = Dφ(x̂t) = Dφ(Eθ(xt)) generated
via the nonlinear decode function D(·). Here, φ is the decoder
parameters. The autoencoder’s loss function is described as

min
θ,φ

1

T

T∑
t=1

‖xt − x̃t‖2F . (1)

2) Multi-Subject Functional Alignment Module: In order
to overcome the problem of response heterogeneity among
different subjects [11], [26], [27], in this paper, we add a
module for the functional alignment of multi-subject neural
responses, which is used for multi-subject fMRI analysis in our
visual image reconstruction method. One of the most popular

functional alignment technologies is hyperalignment proposed
in [11]. A fundamental assumption of HA is that different sub-
jects’ brain activity patterns are noisy ‘rotations’ of a common
space [11]. Let Y (i) ∈ RT×V , t = 1 : T, v = 1 : V, i = 1 : S
denote the i-th subject’s response matrix, R(i) ∈ RV×V is the
corresponding transformation matrix, HA can be viewed as a
CCA-based minimization problem [6], [24], [25], [27]:

min
R(i),R(j)

S∑
i=1

S∑
j=i+1

∥∥∥Y (i)R(i) − Y (j)R(j)
∥∥∥2
F

s.t.(Y(`)R(`))
>
Y (`)R(`) = I, ` = 1 : S. (2)

To build an end-to-end deep learning-based model, we use a
nonlinear neural network in [25] and improvement has been
made on this work. As aforementioned, for the i-th subject
of the S subjects in the dataset, the response matrix Y (i) is
denoted by Y (i) = {y(i)tv } ∈ RT×V , t = 1 : T, v = 1 : V, i =
1 : S. Then, the alignment function can be defined as follows:

min
θ(i),R(i)

θ(j),R(j)

S∑
i=1

S∑
j=1

∥∥∥fi(Y (i); θ(i))R(i) − fj(Y (j); θ(j))R(j)
∥∥∥2
F

s.t.(R(`))
>
((f`(Y

(`); θ(`))
>
f`(Y

(`); θ(`)) + εI)R(`) = I,

` = 1 : S. (3)

Here, θ = {θ(1), θ(2), . . . , θ(S)} represents all the parame-
ters of each subject’s alignment network. The transformation
matrix R = {R(1),R(2), . . . ,R(S)} transfers the individual
neural responses of each subject into the common space, and
the regularized parameter ε is a very small constant, such as
10−8. In formulation (3), every i-th and j-th subjects need
to be calculated, creating a huge amount of computation. At
the same time, during the test, the testing subject need to be
calculated with all the training subject one-by-one. To solve
this problem, a reformulated objective function of equation (3)
also be proposed [12], [25], [38]:

min
G,θ(i),R(i)

S∑
i=1

∥∥∥G− fi(Y (i); θ(i))R(i)
∥∥∥2
F
, (4)

where G = 1
S

∑S
j=1 fj(Y

(j); θ(j))R(j).
During training, we build S MLP networks f`(Y (`); θ(`)),

where S equals the number of subjects for each dataset, which
means that each subject has an individual network. After the
network mapping, the generated features are rotated to the
common space G via the transformation matrix R(`) based
on (4), and θ(`), R(`), and G are learned.

In the testing phase, the response matrix of the new given
subject Y (test) will be mapped into the learned common space
G based on (4). This is just needed as the first step in the
testing phase because the common space G is calculated for
this phase based on the training samples. As the second step
during testing, the parameters θ(test) must be updated. Here,
we refer to the back-propagation algorithm [39] and optimize
strategy in [24], [25].

Finally, the neural activity patterns after mapping:

Ŷ = f(test)(Y
(test); θ(test))R(test). (5)
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3) Cross-Modal Hashing Retrieval Module: In the stimuli
image reconstruction task, a challenge that needs to be ad-
dressed is how to mine the correlation of cross-modal data,
which means the correlation between the seen images and
the neural responses of subjects. In the field of computer
vision (CV), an increasingly important and powerful solution
is cross-modal hashing retrieval [40]–[43]. Among them, Cao
et al. [40] proposed a cross-modal hashing approach called
Cross-Modal Hamming Hashing (CMHH). The compact and
highly concentrated hash codes provided by CMHH assist the
available and efficient retrieval of Hamming space. In this
paper, we add CMHH to our task of reconstructing visual
stimuli in order to find out how the images relate to the neural
responses they cause.

Through the stimuli image generator and multi-subject
functional alignment module above, the latent feature repre-
sentation of images and the response patterns are generated
respectively. For the stimuli images, we add a hash layer of
H hidden units. The output of the stimuli image generator
is converted into continuous code x̂t ∈ RH by the image
hash layer, and this process is repeated for each image xt.
The hash code of image xt is obtained through sign threshold
xht = sgn(x̂t). For neural responses, we also adopt a hash
layer of H hidden units after the multi-subject functional
alignment module. We put the aligned neural response features
in the common space G as the input to the hash layer. Then,
the hash code yht for each response pattern yt can be obtained
via sign threshold yht = sgn(ŷt). Quality hash codes used for
effective retrieval are guaranteed by preserving the similarity
between paired training samples {(x̂t, ŷt, sij) : sij} ∈ S and
by controlling quantization error [40]. Given a set of pairwise
training samples with labeled similarity as {(x̂t, ŷt, sij) :
sij} ∈ S, the hash codes denoted by Xh = [xh1 ,x

h
2 , . . . ,x

h
t ]

and Y h = [yh1 ,y
h
2 , . . . ,x

h
t ], where t = 1, 2, . . . , T for

T pairwise training samples. The learning and optimization
strategies of the cross-modal retrieval module follow [40] and
the cross-modal focal loss LCM can be derived as

min
∑
sij∈S

[sij(1− exp(−γdis(x, y)))σγdis(x, y)− (1−

sij)(exp(−γdis(x, y)))σlog(exp(1− γdis(x, y)))],
(6)

dis(x, y) =
∥∥xhi − yhj ∥∥22 , (7)

where γ is the scaling parameter that controls the precision-
recall trade-off, σ ≥ 0 is a hyper-parameter that control the
relative weight of mismatched sample pairs, and dis(x, y)
refers to the continuous codes‘ Euclidean distance or the hash
codes’ Hamming distance.

4) Reconstructed Image Discrimination: Our goal when
utilizing a GAN-based technique to reconstruct an image is
to come up with a version that is visually indistinguishable
from the original. The discriminator in GANs takes an input
that is either an original or a generated image. It then uses a
binary decision to decide if the input is real or not. This gives
an output of 1 or 0. In our task, the real sample is the original
visual image xt, and the fake sample is the reconstructed

image x̃t. The hidden state is then given to a sigmoid function,
which is asked to predict if the image is real.

We compute the reconstruction loss LRE between the
reconstructed image x̃t and the seen image xt using two
loss components computed by trained deep neural networks.
The pixel-level loss, Lpix, is the first loss component, which
influences whether features are activated after crossing a
threshold. The difference between the original image and the
reconstructed image is measured by the mean squared error
(MSE). The pixel-level loss Lpix can be determined as

min

T∑
t=1

P∑
p=1

(xpt − x̃t
p)2, (8)

where t = 1, 2, . . . , T means the t-th image in all the T
images, and p = 1, 2, . . . , P means the p-th pixel of the image
with P pixels.

The second loss component is the discrimination loss Ldis.
In our method, we trick the discriminator by making the
reconstructed image look as much like the real input image
as possible. This brings the final result of the discrimination
process closer to 1 to fool the discriminator. The definition of
Ldis may be found as follows

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))]+

Ez∼pz(z)[log(D(1−D(G(z))))],
(9)

where x is a real image and G(z) is a generated image, the
value of the latent variable z is chosen at random from a
normal distribution during the training phase. Furthermore, by
normalizing z, it is embedded in a continuous, bounded space
without borders, limiting it to a unit hypersphere.

The reconstruction loss LRE combine the pixel-level loss
Lpix and the discrimination loss Ldis as

LRE =
1

T
(Lpix + Ldis). (10)

After that, we are able to give the complete loss function
of our method as

L = αLRE + βLCM , (11)

where α and β are two hyper-parameters used to find a balance
between the effects of LRE and LCM , and the values of two
parameters are chose randomly from {0.05, 0.1, 0.5, 1, 5, 10}.

C. Implementation Details
1) Visual Image Generator: The GAN architecture used in

our FAA-GAN method mainly refers to [33], whose model
is built on a framework and implementation that are publicly
available1. The generator in our method is derived from the
decoder network of the pretrained autoencoder, which has
one linear and three deconvolutional layers, each with batch
normalization and ReLU activation. The linear layer maps the
image latent features to the first deconvolutional layer that
expects 256 feature channels, and the three deconvolutional
layers maps to 128, 64 and 1 feature channels. Kernel sizes
are 4×4 and stride is 2. The hashing encode layer that follow
the image encoder maps image feature channels to a 10-
dimensional code.

1http://github.com/musyoku/improved-gan
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2) Multi-Subject Functional Alignment: This module con-
sists of S MLP networks, where S equals to the quantity of
subjects for each dataset. Each MLP network consists of four
fully connected (FC) layers, mapping the activity patterns at
each time point into 1024, 256, 128 and 64 features, respec-
tively. Each layer followed by ReLU activation functions. The
regularized parameter ε is set to be 10−8. Similar as the image
generator network, we add a hash hidden layer, mapping the
64 feature into a 10-dimension code.

3) Reconstructed Image Discriminator: Three convolution-
al layers are consisted in the discriminator, followed by batch
normalization and ReLU activations. Kernel sizes are 4×4
and stride is 2. The layers map from 1 to 64, 128 and 256
feature channels. After the convolutional layers, a linear layer
maps the final activations to a single value reflecting the
discriminator decision. In this paper, Adam [44] is used as
the optimizer and we set the learning rate at 0.0005.

IV. EXPERIMENTAL RESULTS

A. Datasets

Two publicly available datasets are used in this paper to ver-
ify the proposed FAA-GAN method, including, a) OpenNeuro
dataset2, and b) Handwritten character dataset3. Both of them
are multi-subject task-based fMRI datasets. The properties of
datasets used in our investigations are displayed in Table I,
and more information is provided below.

a) OpenNeuro Dataset: In this paper, we select the Vi-
sual Object Recognition (DS105) dataset [1] from OpenNeuro
platform for our empirical research. There are 8 categories of
grayscale images, bottles, cats, chairs, faces, houses, scissors,
shoes, and the meaningless pattern, respectively. The visual
task included 6 subjects and each subject saw images from
all the categories and underwent 12 runs. In our experiment,
we down-sample the resolution of the stimuli images from
400×400 to 100×100, to improve the model’s computational
efficiency. Non-practical edge gradation is also set to 0. To
confirm the reconstruction effect of real stimulus images,
meaningless labels and resting time points are eliminated,
and seven categories are reserved. Data preprocessing is done
via the open source toolbox EasyfMRI4. Through EasyfM-
RI, we complete the main processing steps, including slice
timing, smoothing, normalization, and anatomical alignment.
The fusiform face area (FFA) and the parahippocampal place
area (PPA) are two areas of the ventral temporal cortex that
were developed specifically to represent different categories.
In addition to the above steps, as our method is proposed for
analyzing multi-subject data, temporal alignment is also need
to ensure that at the same t-th time point, all subjects must
perform the same type of cognitive task [26], [36].

The leave-one-subject-out cross-validation strategy is used
for the effectiveness estimation of our multi-subject recon-
struction method. Five subjects’ data is used for training,
whereas only one subject’s data is used for testing. In the
training phase, we use data consisting of 5 (subjects) × 120

2http://openneuro.org
3http://sciencesanne.com/research/
4https://easyfmri.learningbymachine.com/

TABLE I
PROPERTIES OF THE DATASETS USED IN THE EXPERIMENTS

Datasets Instances Subjects Categories Pixels Voxels

DS105 5040 6 7 100×100 2294
Chars 1080 3 6 28×28 2420

(samples) × 7 (categories) = 4200 samples. And in the test
phase, data from the test subject consisting of 1(subject) ×
120 (samples) × 7 (categories) = 840 samples are used. For
the convenience of observation, we output the visualization
results into 12 groups. Each group consists of 10(samples) ×
7(categories) = 70 samples. To avoid the contingency caused
by random division, we conduct the experiment ten times and
then determine the average results.

b) Handwritten Character Dataset: Handwritten char-
acter dataset (Chars) contains 360 gray-scale handwritten
character images (equal number of B’s, R’s, A’s, I’s, N’s, and
S’s) [18]. Each side of the image has a resolution of 56×56
pixels, reduced to 28×28 for the sake of computation. Stimuli
were shown in a Siemens Trio 3T MRI system with overall
fixation (TR = 1.74s, TE = 30ms, voxel size = 2mm3). To
obtain an estimate that is closer to the true value of the BOLD
response to individual character instances, the characters were
repeated twice [18], [21], [33].

As with DS105’s training and testing, we employ leave-
one-subject-out cross validation. In each phase, two subjects’
data are used for training purposes, but only one is used
for testing at each level. In each phase, two subjects’ data
are used for training purposes, and another one is used for
testing. In the test phase, we use data from the test subject
consisting of 1(subject) × 60(samples) × 6(categories) =
360 samples. Similar to the DS105 dataset, we output the
visualization results into 12 groups. Each group consists of
1(subject) × 5(samples) × 6(categories) = 30 samples. We
repeat the procedure ten times and then take the average of
the results to get the final result. This is done to get rid of the
chance that comes from random division.

B. Comparison Methods

Our proposed method is compared with four deep learning
methods that also used for reconstruction, including

Deep canonically correlated autoencoder (DCCAE) [45]:
DCCAE uses two autoencoders to learn deep representations
from different modalities of data. DCCAE primarily examines
the same modal data reconstruction errors and bottleneck
correlation, ignoring the reconstruction errors of different
modalities of data.

Deep generative multiview model (DGMM) [21]: This
deep learning model reconstructs the visual images based
on neural responses. It’s nearly like a nonlinear continuation
of the BCCA. DGMM, like previous methods, discards the
temporal information present in fMRI data.

Deep convolutional generative adversarial network (D-
CGAN) [33]: DCGAN uses a deep convolutional generative
adversarial network to generate arbitrary images based on the
stimulus images. DCGAN, on the other hand, does not take
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TABLE II
RECONSTRUCTION RESULTS OF DIFFERENT SUBJECTS ON DS105 (CATEGORY=SHOES) BEFORE & AFTER ALIGNMENT

Before Alignment After Alignment

PCC↑ SSIM↑ Euc dis↓ PCC↑ SSIM↑ Euc dis↓

Subject 1 0.672±0.151 0.485±0.135 0.604±0.088 0.693±0.128 0.493±0.166 0.606±0.097
Subject 2 0.687±0.135 0.494±0.101 0.603±0.154 0.696±0.175 0.498±0.079 0.602±0.149
Subject 3 0.673±0.118 0.489±0.096 0.624±0.160 0.692±0.236 0.496±0.137 0.604±0.202
Subject 4 0.693±0.219 0.492±0.142 0.625±0.133 0.698±0.098 0.494±0.084 0.608±0.173
Subject 5 0.703±0.177 0.474±0.167 0.627±0.201 0.697±0.135 0.491±0.150 0.607±0.155
Subject 6 0.679±0.074 0.466±0.112 0.606±0.144 0.696±0.079 0.493±0.093 0.601±0.126

Average 0.685±0.146 0.483±0.126 0.615±0.147 0.695±0.142 0.494±0.118 0.605±0.150
Variance 1.48e-4 1.22e-4 1.34e-4 5.47e-6 6.17e-6 7.87e-6

into account the temporal information that is included in fMRI
data, just like other approaches do not.

Temporal information guided generative adversarial net-
work (TIGAN) [35]: TIGAN is our previous work, which is a
GAN-based stimuli reconstruction method that takes temporal
information into consideration. However, in this work, we
don’t think about the heterogeneity of response space among
different subjects.

Shared autoencoder (SAE) [46]: SAE is used in this work
to improve the reconstruction of natural images from fMRI
voxels, utilizing a shared autoencoder to alternate encoding
and decoding based on shared semi-supervised learning.

Instance-conditioned generative adversarial network
(IC-GAN) [47]: IC-GAN reconstructs semantically accurate
images with maintained low-level detailed information using
fMRI patterns. A self-supervised learning model reconstructs
target image instance features, while the noise vector uses
inter-sample variance.

C. Evaluation Metrics

In this paper, we use three separate evaluation metrics,
the Pearson’s correlation coefficient (PCC), the structural
similarity index (SSIM), and the Euclidean distance (Euc dis),
to analyze the efficacy of various methods for visual stimuli
reconstruction. 1) PCC shows the correlation between the
shown images and reconstructed ones. The larger this value
is, the higher the correlation between the two images; 2)
SSIM considers about the image texture when calculate the
similarity, so it also reflects the perception of human brains
partly [21]. From -1 to 1, the SSIM can take on a variety of
values. The closer it is to 1, the more similar the two images
are; 3) The distance between the original and reconstructed
versions of an image is calculated via Euc dis. As this
value decreases, feature-space accuracy improves, meaning the
reconstructed image more closely matches the original.

D. Experimental Results

1) Multi-Subject Correlation Analysis: At the beginning of
this part, we conduct an experiment to analyze one of the
main contributions of this paper, namely the effectiveness of
the functional alignment module. In this part, we analyze the
correlation between different subjects in our reconstruction
task. As aforementioned, the heterogeneous response patterns
across different subjects affect the stability and robustness of

the results. So we conduct an experiment to verify that the
functional alignment is valid.

As can be seen in Table II, all the subjects achieve ac-
ceptable reconstruction results on DS105 (category=“shoes”).
Comparing the performance before and after alignment, we
can obtain a better average performance after alignment, which
can verify the effectiveness of functional alignment. We also
calculate the variance of different metrics among subjects,
as shown in the last row of the table. For each metric, the
variance after alignment is significantly smaller than before
alignment. This also confirms that functional alignment can
achieve more stable reconstruction performance on different
subjects’ neural data. Further, we calculate the correlation
between the reconstruction results of different subjects, the
result can be seen in Fig. 2. As is shown in the figure, after
alignment, the correlation between subjects is higher. The
correlation is in the range of (0.50, 0.55) before alignment
and increased to (0.67, 0.72) after alignment.

2) Quantitative Analysis: Tables III and IV show the quan-
titative results of different methods on two datasets. The per-
formance on DS105 are reported in Table III, which leads us to
several observations below. First, our FAA-GAN outperforms
the other deep learning-based comparison methods in terms
of performance. Second, FAA-GAN outperforms DCCAE
significantly. The benefits are likely due to GAN’s greater
generative ability, cross-modal retrieval, and multi-subject data
alignment. Third, our method performs more evenly than
DGMM and SAE. This may be due to functional alignment
and the discriminant model’s performance advantage over deep
neural networks. Finally, cross-modal retrieval helps mine
the image-response relationship compared with GAN-based

(a) Without Functional Alignment (b) With Functional Alignment
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Fig. 2. Correlation of reconstruction results of different subjects on DS105
dataset (category=“shoes”). (a) Results without functional alignment. (b)
Results with functional alignment.
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TABLE III
QUANTITATIVE PERFORMANCES OF COMPARED METHODS ON THE DS105 DATASET.

Model PCC↑ p-value SSIM↑ p-value Euc dis↓ p-value

DCCAE 0.594±0.133 1.9474e-21∗∗∗ 0.403±0.172 3.1363e-22∗∗∗ 0.741±0.136 5.1284e-21∗∗∗
DGMM 0.638±0.098 2.8877e-19∗∗∗ 0.466±0.125 1.9536e-13∗∗∗ 0.649±0.079 8.6753e-16∗∗∗
DCGAN 0.649±0.172 8.3987e-19∗∗∗ 0.481±0.083 2.9422e-12∗∗∗ 0.639±0.179 1.0771e-12∗∗∗
TIGAN 0.686±0.157 1.0893e-7∗∗∗ 0.488±0.145 4.1410e-9∗∗∗ 0.612±0.116 9.6304e-5∗∗∗
SAE 0.684±0.063 1.5035e-10∗∗∗ 0.489±0.038 1.3009e-7∗∗∗ 0.614±0.052 4.0888e-5∗∗∗
IC-GAN 0.693±0.099 3.8766e-5∗∗∗ 0.493±0.065 9.6802e-5∗∗∗ 0.609±0.071 0.0212∗

FAA-GAN (Ours) 0.698±0.091 — 0.499±0.119 — 0.601±0.087 —

↑: The higher the value is, the better performance the method get. ↓: The lower the value is, the better performance the method get.
The p-value of the improvement of FAA-GAN over the method: ∗ indicating (p<0.05), ∗∗ indicating (p<0.01), ∗ ∗ ∗ indicating (p<0.001).

TABLE IV
QUANTITATIVE PERFORMANCES OF COMPARED METHODS ON THE HANDWRITTEN CHARACTER DATASET.

Model PCC↑ p-value SSIM↑ p-value Euc dis↓ p-value

DCCAE 0.352±0.155 2.1754e-25∗∗∗ 0.185±0.174 6.7282e-33∗∗∗ 0.761±0.093 9.8456e-32∗∗∗
DGMM 0.497±0.164 4.9025e-9∗∗∗ 0.339±0.058 1.0150e-12∗∗∗ 0.651±0.118 3.0544e-15∗∗∗
DCGAN 0.496±0.125 3.0680e-9∗∗∗ 0.342±0.091 4.3433e-7∗∗∗ 0.644±0.174 4.8757e-12∗∗∗
TIGAN 0.501±0.191 1.8298e-7∗∗∗ 0.341±0.076 1.2857e-7∗∗∗ 0.641±0.122 3.4158e-11∗∗∗
SAE 0.503±0.093 4.9853e-5∗∗∗ 0.343±0.069 5.5897e-6∗∗∗ 0.638±0.105 1.8247e-8∗∗∗
IC-GAN 0.499±0.079 6.7078e-7∗∗∗ 0.341±0.087 2.0590e-9∗∗∗ 0.642±0.077 1.0261e-10∗∗∗
FAA-GAN (Ours) 0.509±0.139 — 0.348±0.107 — 0.631±0.085 —

↑: The higher the value is, the better performance the method get. ↓: The lower the value is, the better performance the method get.
The p-value of the improvement of FAA-GAN over the method: ∗ indicating (p<0.05), ∗∗ indicating (p<0.01), ∗ ∗ ∗ indicating (p<0.001).

reconstruction methods like DCGAN, TIGAN, and IC-GAN.
Functional alignment also improves subject-to-subject consis-
tency. Table IV shows the reconstruction performance for the
handwritten character dataset. When comparing DCCAE and
DGMM, we refer to the experimental settings in [21]. Similar
to the DS105 dataset, the quantitative results for all three
evaluative metrics are likewise better. We perform a pairwise
t-test based on the experimental results, and the p-values and
indications are shown in Tables III and IV. The resulting p-
values show that significant performance improvement has
been achieved.

3) Qualitative Analysis: Fig. 3 and Fig. 4 show the qual-
itative results of image reconstruction on the DS105 and the
handwritten character datasets, respectively. In each figure,
the top row represents the original images that were shown
to the subjects during the experiments, while the following
rows show the results of different compared reconstruction
methods. Fig. 3 shows DS105 (category = “shoes”) visual-
ization reconstructing results. The example demonstrates that
compared to the other methods, our FAA-GAN yields superior
reconstructions, especially for natural images. Inaccurate con-
tour description is a limitation of DCCAE and DGMM. Their
inability to reconcile the original and reconstructed images
is one possible explanation. The three GAN-based algorithms
outperform DCCAE and DGMM; however, they are not as
good as FAA-GAN. As for SAE, although acceptable recon-
structed images are generated, the results still don’t match our
FAA-GAN in some details.

Fig. 4 depicts the visualization results of the reconstructed
handwritten characters. The figure shows how closely the
reconstructed characters resemble the originals. The perfor-
mance of DCCAE does not match our approach. Complex

Original

DCCAE

DGMM

TIGAN

DCGAN

FAA-GAN

(Ours)

SAE

IC-GAN

Fig. 3. Qualitative performances of compared methods on the DS105 dataset
(category = “shoes”).

Original

DCCAE

DGMM

SAE

IC-GAN

FAA-GAN

(Ours)

TIGAN

DCGAN

Fig. 4. Qualitative performances of compared methods on the handwritten
character dataset.

noises have an impact on reconstruction results, which fre-
quently lack the core properties of the original images. Further,
the other compared methods also produce imprecise recon-
struction performance. Despite producing better results than
DCCAE and close to each other, these methods lose some
detailed information.
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Fig. 5. Reconstruction results on the DS105 dataset with/without different
components in our model.

4) Ablation Study: As mentioned above, there are three key
components in our method, i.e., the multi-subject functional
alignment module, the cross-modal retrieval module, and the
GAN-based reconstruction module, respectively. Herein, an
ablation study is conducted to determine the effectiveness
of each component of our strategy and, by extension, its
contribution to the model’s overall performance.

With one module: With one module means only one
component was used to reconstruct the images. Only GAN
means that there is no functional alignment across subjects,
and cross-modal hashing retrieval also be replaced by Bayesian
inference in [21]. Only FA means that there is no cross-modal
retrieval and no discriminator loss, only pixel-wise loss is
retained to complete the reconstruction. Only CM refers to
no functional alignment and GAN architecture in the method.

With two modules: Here, two of the three components
are included to evaluate the impact on our model, while
the rest component is absent. 1) ”GAN+FA”: means ”No
CM”. We only learn a linear regression between the neural
representation and the image latent features. At the same time,
the effect in the absence of β can be verified; 2) ”GAN+CM”:
means ”No FA”. To explore the influence of the multi-subject
functional alignment module, we disregard the heterogeneity
among subjects and don’t do the functional alignment; 3)
”FA+CM”: means ”No GAN”. We replace the GAN with the
pre-trained autoencoder, and there is no discriminator. At the
same time, the effect in the absence of α can be verified.

With three modules: With three modules means that we
use all the components in our method, that is to say, we use
the complete model to compare with the circumstances above
to show the ablation study results.

Fig. 5 shows the reconstruction performance on the DS105
dataset under the different circumstances we set. We can

TABLE V
RECONSTRUCTION RESULTS OF DIFFERENT FUNCTIONAL ALIGNMENT

METHODS ON DS105

PCC↑ SSIM↑ Euc dis↓

wo-alignment 0.649±0.227 0.449±0.073 0.635±0.092
HA [11] 0.675±0.084 0.468±0.119 0.619±0.219

SRM [36] 0.682±0.146 0.481±0.060 0.612±0.164
SHA [26] 0.688±0.099 0.480±0.144 0.609±0.085
DHA [25] 0.698±0.091 0.499±0.119 0.601±0.087

mainly observe potential trends and draw conclusions from the
figure below. First, comparing the three main components in
our method, GAN contributes more to the final performance,
which may be due to its generative ability, which can generate
images similar to the inputs. Second, the more components
the model has, the better results can be obtained. Last but
not least, the best performance is achieved by FAA-GAN,
which integrates all three components, indicating that the
entire procedure helps to enhance reconstruction accuracy.

5) Comparison of Different Functional Alignment Methods:
As one of the important module of our proposed method,
different functional alignment methods may lead to quite
different influence to the final reconstruction results. In this
paper, we use several different functional alignment methods
[11], [25], [26], [36] and compared the performance on DS105.

Table V illustrates that the reconstruction outcome without
alignment (wo-alignment) is not as satisfying as the techniques
with alignment, indicating that our functional alignment strat-
egy in the reconstruction model succeeded. Because they are
the initial versions of functional alignment and the updated
approaches produce superior outcomes, HA and SRM are
slightly less expensive than other alignment methods. As a
supervised method, SHA may have failed to play an optimal
function in our unsupervised reconstruction technique. Finally,
the nonlinear fitting ability of learned parameters of DHA,
which we applied in this work, resulted in improved outcomes.

V. DISCUSSION

In this part, we first analyze the computational complexity of
different deep learning-based reconstruction methods, includ-
ing space complexity and time complexity. Then, we evaluate
the effects of regularization parameters in our model. Finally,
we highlight our work’s weaknesses and propose directions
for additional field research.

A. Analysis of Computational Complexity

In this part, we analyze the computational complexity of our
visual image reconstruction task. Two main indexes are consid-
ered, i.e., space complexity and time complexity, respectively.
For space complexity, the network structure of our model
has been described in the preceding part (See Implementation
Details). For time complexity, the runtime of the proposed
method is compared with the previous methods using the
DS105 dataset. Fig. 6 illustrates the runtime of all the methods,
where the runtime of other methods is scaled based on the
FAA-GAN (the runtime of the proposed method is considered
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Fig. 6. Runtime analysis of different methods.

the unit). As depicted in this figure, DCCAE and DGMM
spend less time because of their simple architecture compared
with the improved versions. Then, IC-GAN generated the
longest runtime because it is proposed based on multi-layer
BigGAN, and as it is used for generating colorful images,
it considers the RGB channels. Further, for the other four
methods, including FAA-GAN, the runtime is about the same
and acceptable.

B. Effects of Regularization Parameters

In our proposed method, the optimized objective function
is mainly composed of two parts, the reconstruction loss LRE
and the cross-modal focal loss LCM . In order to balance the
two loss parts and control their influence in the model, we set
two hyperparameters, α and β. We conduct image reconstruc-
tion experiments on the DS105 dataset with different regular-
ization parameters chosen from {0.05, 0.1, 0.5, 1, 5, 10}, and
the results are displayed in Fig. 7.

As can be seen from the figure, we can observe that with
different parameters, our proposed FAA-GAN method can
obtain relatively stable reconstruction results. And the best
regularization parameter can be chosen from α = 1 and
β = {1, 5}, where FAA-GAN achieves better results.

C. Limitations and Future Work

In our opinion, the current work still has several shortcom-
ings that need to be addressed. First, the solution of FAA-GAN
being presented is made up of three main modules, which will
make the demand on memory for visual reconstruction greater.
As a result, model compression is a significant area that
should be focused on for practical applications. Second, issues
with data collection meant that the task-based fMRI datasets
used here had a relatively small sample size. Several transfer
learning-based methods have been proposed [48]–[50]. For
large sample sizes or multi-site fMRI datasets, this is a barrier
that needs to be overcome before algorithms can be applied.
Third, the method described in this paper doesn’t effectively
utilize whole-brain structural data. In future research, we will
construct information-based methods on whole-brain structural
data. It highlights the information-valid area in brain data and
improves visual image reconstruction. At last, the functional
alignment module in FAA-GAN assumes that the training set’s

α

β

EUC_DIS

Fig. 7. Reconstruction results (Euc dis) of the DS105 dataset vis different
values of α and β.

stimuli are already aligned in time, which needs additional
time to align the testing subject to the learned common space.
In the future, in order to improve time efficiency, we will
consider developing a framework that doesn’t need temporal
alignment to adapt to more application scenarios.

VI. CONCLUSION

This paper proposes FAA-GAN, a multi-subject visual
image reconstruction method. Our FAA-GAN method recon-
structs visual images based on neural activity patterns via
GAN architecture, and multi-subject functional alignment is
taken into account. The GAN module, the functional align-
ment module, and the cross-modal retrieval module are the
three major modules in our method. The proposed FAA-
GAN not only provides an image reconstruction model that
mines the relationship between visual stimulus and elicited
brain activities, but it also addresses the issue of subject
heterogeneity. Cross-modal hashing retrieval is also introduced
to compute the association between different modalities of
data and increase cross-modal retrieval accuracy. Through the
experiments on Visual Object Recognition and handwritten
character datasets, we have seen that our FAA-GAN can get
better results than the state-of-the-art methods.
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