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Abstract

Multivariate Pattern (MVP) classification holds enormous

potential for decoding visual stimuli in the human brain

by employing task-based fMRI data sets. There is a wide

range of challenges in the MVP techniques, i.e. decreasing

noise and sparsity, defining effective regions of interest

(ROIs), visualizing results, and the cost of brain studies.

In overcoming these challenges, this paper proposes a novel

model of neural representation, which can automatically

detect the active regions for each visual stimulus and then

utilize these anatomical regions for visualizing and analyzing

the functional activities. Therefore, this model provides an

opportunity for neuroscientists to ask this question: what

is the effect of a stimulus on each of the detected regions

instead of just study the fluctuation of voxels in the manually

selected ROIs. Moreover, our method introduces analyzing

snapshots of brain image for decreasing sparsity rather than

using the whole of fMRI time series. Further, a new

Gaussian smoothing method is proposed for removing noise

of voxels in the level of ROIs. The proposed method enables

us to combine different fMRI data sets for reducing the cost

of brain studies. Experimental studies on 4 visual categories

(words, consonants, objects and nonsense photos) confirm

that the proposed method achieves superior performance to

state-of-the-art methods.

1 Introduction

A universal unanswered question in neuroscience is how
the human brain activities can be mapped to the differ-
ent brain tasks? As one of the main techniques in task-
based functional Magnetic Resonance Imaging (fMRI)
analysis, Multivariate Pattern (MVP) is a conjunction
between neuroscience and computer science, which can
extract and decode brain patterns by applying the clas-
sification methods [1, 2]. Indeed, it can predict patterns
of neural activities associated with different cognitive

∗Department of Computer Science and Technology, Nan-

jing University of Aeronautics and Astronautics Nanjing, China,
email: myousefnezhad@nuaa.edu.cn.
†Department of Computer Science and Technology, Nan-

jing University of Aeronautics and Astronautics Nanjing, China,
email: dqzhang@nuaa.edu.cn.

states [3, 4] and also can define decision surfaces to dis-
tinguish different stimuli for decoding the brain and un-
derstanding how it works [5, 6]. Analyzing the patterns
of visual objects is one of the most interesting topics in
MVP classification, which can enable us to understand
how brain stores and processes the visual stimuli. It can
be used to find novel treatments for mental diseases or
even to create a new generation of the user interface.

Technically, MVP classification is really a challeng-
ing problem. Firstly, most of the fMRI data sets are
noisy and sparse, which can decrease the performance
of MVP methods [7]. The next challenge is defining
the regions of interest (ROIs) [4]. As mentioned before,
fMRI techniques allow us to study what information are
represented in the different regions. So, it is really im-
portant to know what are the effects of different stimuli
on the brain regions, especially in complex tasks (doing
some simple tasks at the same time such as watching
photos and tapping keys). On the one hand, most of
the previous studies manually selected the ROIs. On
the other hand, defining wrong ROIs can significantly
decrease the performance of MVP methods [3, 4]. An-
other challenge is the cost of brain studies. Combining
different homogeneous fMRI data sets can be considered
as a solution for this problem but data must be normal-
ized in a standard space. The procedure of normaliza-
tion can increase the time and space complexities and
decrease the robustness of MVP techniques, especially
in voxel-based methods [5]. The last challenge is visu-
alization. As a machine learning technique, MVP rep-
resents the numerical results in the voxel-level, network
connections, etc. Sometimes, it is so hard for neurosci-
entists to find a relation between the generated results
and the cognitive states.

The contributions of the paper are four fold: firstly,
the proposed method estimates and analyzes a snapshot
of brain image for each stimulus based on the level of
using oxygen in the brain instead of analyzing whole of
fMRI time series. Indeed, employing these snapshots
can dramatically decrease the sparsity. Secondly, our
methods can automatically detect active regions for
each stimulus and dynamically define ROIs for each
data set. Further, it develops a novel model of neural



representation for analyzing and visualizing functional
activities in the form of anatomical regions. This model
can provide a compact and informative representation of
neural activities for neuroscientists to understand: what
is the effect of a stimulus on each of the automatically
detected regions instead of just study the fluctuation
of a group of voxels in the manually selected ROIs.
The next contribution is a new Gaussian smoothing
method for removing noise of voxels in the level of
anatomical regions. Lastly, this paper employs the
L1-regularization Support Vector Machine (SVM) [8]
method for creating binary classification at the ROIs
level and then combine these classifiers by using the
Bagging algorithm [9, 10] for generating the MVP
model.

2 Related Works

As the most prevalent techniques in the human brain
decoding, MVP methods can predict patterns of neural
activities. Since spatial resolution and within-area pat-
terns of response in fMRI can provide an informative
representation of stimulus distinctions, most of previ-
ous MVP studies for decoding the human brain focused
on task-based fMRI data sets [5]. They used these data
sets for generating different forms of neural representa-
tion, include usually voxels (volume elements in brain
images), nodes on the cortical surface, the average signal
for an area, a principal or independent component, or
a measure of functional connectivity between a pair of
locations [5, 6, 11, 12]. Previous studies demonstrated
that MVP classification can also distinguish many other
brain states such as recognizing visual [5, 6, 11], or au-
ditory stimuli [13].

Pioneer studies just focused on the special regions
of the human brain, such as the Fusiform Face Area
(FFA) or Parahippocampal Place Area (PPA) [11].
Haxby et al. showed that different visual stimuli,
i.e. human faces, animals, etc., represent different
responses in the brain [5, 14]. Hanson et al. developed
combinatorial codes in the ventral temporal lobe for
object recognition [6]. Norman et al. argued for
using SVM and Gaussian Naive Bayes classifiers [15].
Anderson and Oates studied the chance of applying
non-linear Artificial Neural Network (ANN) on brain
responses [1].

There is great potential for employing sparse meth-
ods for brain decoding problems [16, 17]. Carroll et
al. employed the Elastic Net [18] for prediction and in-
terpretation of distributed neural activity with sparse
models [19]. Richiardi et al. extracted the character-
istic connectivity signatures of different brain states to
perform classification [20]. Varoquaux et al. proposed
a small-sample brain mapping by using sparse recov-

ery on spatially correlated designs with randomization
and clustering. Their method is applied on small sets
of brain patterns for distinguishing different categories
based on a one-versus-one strategy [21]. McMenamin et
al. studied subsystems underlie abstract-category (AC)
recognition and priming of objects (e.g., cat, piano) and
specific-exemplar (SE) recognition and priming of ob-
jects (e.g., a calico cat, a different calico cat, a grand
piano, etc.). Technically, they applied SVM on manu-
ally selected ROIs in the human brain for generating the
visual stimuli predictors [4]. Mohr et al. compared four
different classification methods, i.e. L1/2 regularized
SVM [8, 22], the Elastic Net, and the Graph Net [23], for
predicting different responses in the human brain. They
show that L1-regularization can improve classification
performance while simultaneously providing highly spe-
cific and interpretable discriminative activation patterns
[3]. Osher et al. proposed a network (graph) based ap-
proach by using anatomical regions of the human brain
for representing and classifying the different visual stim-
uli responses (faces, objects, bodies, scenes) [12].

3 The Proposed Method

The fMRI techniques visualize the neural activities by
measuring the level of oxygenation or deoxygenation in
the human brain, which is called Blood Oxygen Level
Dependent (BOLD) signals. Technically, these signals
can be represented as time series for each subject. Most
of the MVP techniques directly analyze these noisy and
sparse time series for understanding which patterns are
demonstrated for different stimuli.

The main idea of our proposed method is so sim-
ple. Instead of analyzing whole of the time series, the
proposed method estimates and analyzes a snapshot of
brain image for each stimulus when the level of using
oxygen is maximized. As a result, this method can au-
tomatically decrease the sparsity of brain image. The
proposed method is applied in three stages: firstly, snap-
shots of brain image are selected by finding local max-
imums in the smoothed version of the design matrix.
Then, features are generated in three steps, including
normalizing to standard space, segmenting the snap-
shots in the form of automatically detected anatomical
regions, and removing noise by Gaussian smoothing in
the level of ROIs. Finally, decision surfaces [5] are gen-
erated by utilizing the bagging method on binary classi-
fiers, which are created by applying L1-regularized SVM
on each of neural activities in the level of ROIs.

3.1 Snapshots Selection fMRI time series collected
from a subject can be denoted by F ∈ Rt×m, where t is
the number of time samples, and m denotes the number
of voxels. Same as previous studies [1, 4, 3, 11], F can
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(a) Design matrix in the block-design experiment
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(b) Design matrix in the event-related experiment

Figure 1: Two examples of smoothed version of the design matrix. The blue lines show the original convolution
(di = Si ∗H), the red dashed lines depict the smooth versions (φi = (Si ∗H) ∗G), and the green circles illustrate

the locations (S∗i ) of the detected snapshots (Ψ̂).

Algorithm 1 The Snapshots Selection Algorithm

Input: fMRI time series F, time points (onsets) S,
HRF signal H, , Gaussian Parameter σG:

Output: Snapshots Ψ, the sets of correlations β̂:
Method:

1. Generating the design matrix D = S ∗H.
2. Defining F = Dβ̂ + ε.
3. Calculating β̂ by using (3.2).
4. Generating Gaussian kernel by (3.4).
5. Smoothing the design matrix by (3.5).
6. Finding locations of the snapshots by (3.8).

7. Calculating snapshots Ψ̂ by using (3.9).

be formulated by a linear model as follows:

(3.1) F = D(β̂)ᵀ + ε

where D ∈ Rt×p denotes the design matrix, ε is
the noise (error of estimation), β̂ ∈ Rm×p denotes
the sets of correlations (estimated regressors) between
voxels. The design matrix can be denoted by D =
{d1,d2, . . . ,di, . . . ,dp}, and the sets of correlations can

be defined by β̂ = {β̂1, β̂2, . . . , β̂i, . . . , β̂p}. Here, di ∈
Rt and β̂i ∈ Rm are the column of design matrix and
the set of correlations for i− th category, respectively. p
is also the number of all categories in the experiment F.
In fact, each category (independent tasks) contains a set
of homogeneous visual stimuli. In addition, the nonzero
voxels in β̂i represents the location of all active voxels for
the i−th category [24]. As an example, imagine during a
unique session for recognizing visual stimuli, if a subject
watches 4 photos of cats and 3 photos of houses, then
the design matrix contains two columns; and there are
also two sets of correlations between voxels, i.e. one for
watching cats and another for watching houses. Indeed,
the final goal of this section is extracting 7 snapshots of
the brain image for the 7 stimuli in this example.

The design matrix can be classically calculated
by convolution of time samples (or onsets: S =
{S1,S2, . . . ,Si, . . . ,Sp}) and H as the Hemodynamic
Response Function (HRF) signal, di = Si ∗ H =⇒
D = S∗H [11, 24]. In addition, there is a wide range of

solutions for estimating β̂ values. This paper uses the
classical method Generalized Least Squares (GLS) [24]

for estimating the β̂ values where Σ is the covariance
matrix of the noise (V ar(ε) = Σσ2 6= Iσ2):

(3.2) β̂ =
(
(DᵀΣ−1D)

−1
DᵀΣ−1F

)ᵀ
Each local maximum in di represents a location where
the level of using oxygen is so high. In other words,
the stimulus happens in that location. Since di mostly
contains small spikes (especially for event-related exper-
iments), it cannot be directly used for finding these local
maximums. Therefore, this paper employs a Gaussian
kernel for smoothing the di signal. Now, the interval Ĝ
is defined as follows for generating the kernel:
(3.3)

Ĝ =

{
exp

(
−ĝ2

2σ2
G

) ∣∣∣∣ ĝ ∈ Z and −2dσGe ≤ ĝ ≤ 2dσGe
}

where σG > 0 denotes a positive real number; d.e is
the ceiling function; and Z denotes the set of integer
numbers. Gaussian kernel is also defined by normalizing
Ĝ as follows:

(3.4) G =
Ĝ∑
j ĝj

where
∑
j ĝj is the sum of all elements in the interval Ĝ.

This paper defines the smoothed version of the design
matrix by applying the convolution of the Gaussian
kernel G and each column of the design matrix (di)
as follows:

(3.5) φi = di ∗G = (Si ∗H) ∗G



(3.6) Φ = {φ1, φ2, . . . , φp}

where φi = f (Si,H,G). Since the level of smoothness
in Φ is related to the positive value in (3.3), σG = 1
is heuristically defined to generate the optimum level
of smoothness in the design matrix. The general
assumption here is the 0 < σG < 1 can create design
matrix, which is sensitive to small spikes. Further,
σG > 1 can rapidly increase the level of smoothness,
and remove some weak local maximums, especially in
the event-related fMRI data sets. Figure 1 illustrates
two examples of the smoothed columns in the design
matrix. The local maximum points in the φi can be
calculated as follows:

(3.7) S∗i =

{
arg
Si

φi

∣∣∣∣ ∂φi∂Si
= 0 and

∂2φi
∂SiSi

> 0

}
where S∗i ⊂ Si denotes the set of time points for all local
maximums in φi. The sets of maximum points for all
categories can be denoted as follows:

(3.8) S∗ = {S∗1,S∗2, . . . ,S∗i , . . . ,S∗p}

As mentioned before, the fMRI time series can be also
denoted by Fᵀ = {fᵀ1 , f

ᵀ
2 , . . . , f

ᵀ
j , . . . , f

ᵀ
t }, where fᵀj ∈

Rm is all voxels of fMRI data set in the j − th time
point. Now, the set of snapshots can be formulated as
follows:

(3.9) Ψ̂ = {fᵀj | f
ᵀ
j ∈ Fᵀ and j ∈ S∗} =

{ψ̂1, ψ̂2, . . . , ψ̂k, . . . ψ̂q} ∈ Rm×q

where q is the number of snapshots in the brain image

F, and ψ̂k ∈ Rm denotes the snapshot for k − th
stimulus. These selected snapshots are employed in next
section for extracting features of the neural activities.
Algorithm 1 illustrates the whole of procedure for
generating the snapshots from the time series F.

3.2 Feature Extraction In this paper, the feature
extraction is applied in three steps, i.e. normalizing
snapshots to standard space, segmenting the snapshots
in the form of automatically detected regions, and
removing noise by Gaussian smoothing in the level
of ROIs. As mentioned before, normalizing brain
image to the standard space can increase the time and
space complexities and decrease the robustness of MVP
techniques, especially in voxel-based methods [5]. On
the one hand, most of the previous studies [3, 4, 6,
11] preferred to use original data sets instead of the
standard version because of the mentioned problem. On
the other hand, this mapping can provide a normalized
view for combing homogeneous data sets. As a result,

it can significantly reduce the cost of brain studies and
rapidly increase the chance of understanding how the
brain works. Employing brain snapshots rather than
analyzing whole of data can solve the normalization
problem.

Normalization can be formulated as a mapping
problem. Indeed, brain snapshots are mapped from Rm
space to the standard space Rn by using a transforma-
tion matrix for each snapshot. There is also another
trick for improving the performance of this procedure.
Since the set β̂i denotes the locations of all active vox-
els for the i− th category, it represents the brain mask
for that category and can be used for generating the
transform matrix related to all snapshots belong to that
category. For instance, in the example of the previous
section, instead of calculating 7 transform matrices for
7 stimuli, we calculate 2 matrices, including one for the
category of cats and the second one for the category of
houses. This mapping can be denoted as follows:

(3.10) Ti: β̂i ∈ Rm → βi ∈ Rn

where Ti ∈ Rm×n denotes the transform matrix, βi =(
(β̂i)

ᵀTi

)ᵀ
is the set of correlations in the standard

space for i− th category. This paper utilizes the FLIRT
algorithm [25] for calculating the transform matrix,
which minimizes the following objective function:

(3.11) Ti = arg min(NMI(β̂i,Ref))

where the function NMI denotes the Normalized Mu-
tual Information between two images [25], and Ref ∈
Rn is the reference image in the standard space. This
image must contain the structures of the human brain,
i.e. white matter, gray matter, and CSF. These struc-
tures can improve the performance of mapping be-
tween the brain mask in the selected snapshot and
the general form of a standard brain. The perfor-
mance of (3.11) will be analyzed in the supplemen-
tary materials1. In addition, the sets of correla-
tions for all of categories in the standard space is de-
noted by β = {β1, β2, . . . , βi, . . . , βp} ∈ Rn×p, and
the sets of transform matrices is defined by T =
{T1,T2, . . . ,Ti, . . . ,Tp}. Now, the Select function is
denoted as follows to find suitable transform matrix for
each snapshot:

(
T∗j , β

∗
j

)
= Select(ψ̂j ,T, β) = {(Ti, βi) |

Ti ∈ T, βi ∈ β , ψ̂j is belonged to the i− th

category =⇒ ψ̂j ∝ βi ∝ Ti}

(3.12)

1Supplementary Materials is available:
sourceforge.net/projects/myousefnezhad/files/MRNR/



Algorithm 2 The Feature Extraction Algorithm

Input: Snapshots Ψ, correlations β̂, Ref image,
Atlas A:
Output: Smoothed snapshots X:
Method:
1. For each β̂i, calculate transform matrix by (3.11).

2. Mapping ψ̂j to standard space by T∗j and (3.13).
3. Detecting active voxels for each snapshot by (3.14).
4. Segmenting each snapshot by (3.16).
5. Finding active regions for each snapshot by (3.17).
6. Generating Gaussian kernel by (3.18).
7. Smoothing snapshots by (3.19).

where T∗j ∈ Rm×n and β∗j ∈ Rn are the transform ma-
trix and the set of correlations related to the j − th
snapshot, respectively. Based on (3.12), each normal-
ized snapshot in the standard space is defined as follows:

T∗j : ψ̂j ∈ Rm → ψj ∈ Rn =⇒ ψj =

((
ψ̂j
)ᵀ

T∗j

)ᵀ
(3.13)

where ψj ∈ Rn is the j − th snapshot in the standard
space. Further, all snapshots in the standard space can
be defined by Ψ = {ψ1, ψ2, . . . , ψj , . . . , ψq} ∈ Rn×q. As
mentioned before, nonzero values in the correlation sets
depict the location of the active voxels. Based on (3.12),
this paper uses these correlation sets as weights for each
snapshot as follows:

(3.14) Θj = ψj ◦ β∗j

where ◦ denotes Hadamard product, and Θj ∈ Rn
is the j − th modified snapshot, where the values of
deactivated voxels (and also deactivated anatomical
regions) are zero in this snapshot. As the final product
of normalization procedure, the set of snapshots can be
denoted by Θ = {Θ1,Θ2, . . . ,Θj , . . . ,Θq}. Further,
each snapshot can be defined in the voxel level as
follows, where θkj is the k− th voxel of j − th snapshot:

(3.15) Θj =
[
θ1j , θ

2
j , . . . , θ

k
j , . . . , θ

n
j

]
The next step is segmenting the snapshots in the

form of automatically detected regions. Now, consider
anatomical atlas A ∈ Rn = {A1,A2, . . . ,A`, . . . ,AL},
where ∩L`=1{A`} = ∅, ∪L`=1{A`} = A, and L is the
number of all regions in the anatomical atlas. Here, A`

denotes the set of voxel locations in the snapshots for
the ` − th anatomical region. A segmented snapshot
based on the `− th region can be denoted as follows:

(3.16) Θ(j,`) = {θkj | θkj ∈ Θj and k ∈ A`}

where Θ(j,`) ⊂ Θj is the subset of voxels in the
snapshot Θj , which these voxels are belonged to the
the ` − th anatomical region. In addition, the sets of
all anatomical regions in the j − th snapshot can be
defined by Θj = {Θ(j,1) ∪ Θ(j,2) ∪ · · · ∪ Θ(j,`) ∪ · · · ∪
Θ(j,L)} =

[
θ1j , θ

2
j , . . . , θ

k
j , . . . , θ

n
j

]
. The automatically

detected active regions can be also defined as follows:
(3.17)

Θ∗j =

{
Θ(j,`)|Θ(j,`) ⊂ Θj and

∑
θk
(j,`)
∈Θ(j,`)

|θk(j,`)| 6= 0

}

where
∑
θk
(j,`)
∈Θ(j,`)

|θk(j,`)| represents sum of all voxels

in the Θ(j,`). Based on (3.17), active regions in the
j − th snapshot can be defined as the regions with
non-zero voxels because values of all deactivated voxels
are changed to zero by using (3.14). The last step is
removing noise by Gaussian smoothing in the level of
ROIs. As the first step, a Gaussian kernel for each
anatomical region can be defined as follows:

(3.18) σ` =
N2
`

5N2
` logN`

V̂` =

{
exp

(
−v̂2

2σ`

) ∣∣∣∣ v̂ ∈ Z and −2dσ`e ≤ v̂ ≤ 2dσ`e
}

V` =
V̂`∑
j v̂j

where N` denotes the number of voxels in `− th region,
and

∑
j v̂j is sum of all values in the interval V̂`.

Indeed, the level of smoothness is related to σ`, which
is heuristically calculated for each region based on the
number of voxels in that region. As the second step, the
smoothed version of the j − th snapshot can be defined
as follows:

(3.19) ∀` = L1 . . . L2→ X(j,`) = Θ(j,`) ∗V`,

Xj = {X(j,L1), . . . ,X(j,`), . . .X(j,L2)}

where Θ(j,`) ∈ Θ∗j is the ` − th active region of j − th
snapshot, and ∗ denotes the convolution between the
active region and the Gaussian kernel related to that re-
gion. Further, L1 and L2 are the first and the last active
regions in the snapshot, where 1 ≤ L1 ≤ L2 ≤ L. Fig-
ure 2 demonstrates two examples of smoothed anatom-
ical regions in the voxel level. All smoothed snap-
shots can be defined by X = {X1,X2, . . . ,Xj , . . . ,Xq}.
Moreover, Algorithm 2 shows the whole of procedure for
extracting features.

3.3 Classification Method As a classical classifi-
cation method, Support Vector Machine (SVM) [8, 22]
decreases the operating risk and can find an optimized
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Figure 2: Two examples of smoothed anatomical regions (X(j,`)) in the voxel level. Blue lines are the original
data, and red lines depict the smoothed values.

solution by maximizing the margin of error. As a result,
it can mostly generate better performance in compar-
ison with other methods, especially for binary classifi-
cation problems. Therefore, SVM is generally used in
the wide range of studies for creating predictive models
[4, 3, 6, 11]. The final goal of this section is employ-
ing the L1-regularization SVM [8] method for creating
binary classification at the ROIs level, and then com-
bining these classifiers by using the Bagging algorithm
[9, 10] for generating the MVP final predictive model.

As mentioned before, fMRI time series for a subject
can be denoted by F. Since fMRI experiment is mostly
multi-subject, this paper denotes Fu,= 1:U as fMRI
time series (sessions) for all subjects, where U is the

number of subjects. In addition, τ =
∑U
u=1 qu is

defined as the number of all snapshots in a unique
fMRI experiment. Here qu is the number of snapshots
for u − th subject. Further, the original ground truth
(the title of stimuli such that cats, houses, etc.) for
all snapshots is denoted by Y = {y1, y2, . . . , yj , . . . yτ},
where yj denotes the ground truth for j − th snapshot.
Since this paper uses a one-versus-all strategy, we can
consider that yj ∈ {−1,+1}. This paper applies
following objective function on automatically detected
active regions as the L1-regularization SVM method for
creating binary classification in the level of ROIs [3, 8]:
(3.20)

η`: min
W`

C

τ∑
j=1

max(0, 1− yjX(j,`)W(j,`)) + ‖W`‖1

where C > 0 is a real positive number, X(j,`) and yj
denote the voxel values of ` − th region and the class
label of j − th snapshot, respectively. Further, W` =
[W(1,`),W(2,`), . . . ,W(j,`), . . . ,W(τ,`)] is the generated
weights for predicting MVP model based on the ` − th
active region. The classifier for ` − th region is also
denoted by η`, where all of these classifiers can be
defined by η = {ηL1, . . . , η`, . . . ηL2}. The final step

Algorithm 3 The Proposed Method by using (LOO)

Input: fMRI time series Fu, u = 1:U , Onsets Su, u =
1:U , HRF signal H, Gaussian Parameter σG (default
σG = 1):
Output: MVP performance (ACC,AUC)
Method:
1. Foreach Subject Fu :
2. Create train set FTr = {Fj |j = 1:U, j 6= u}.
3. Extract snapshots of FTr by using Algorithm 1.
4. Generate features of FTr by using Algorithm 2.
5. Train binary classifiers η by using FTr and (3.20).
6. Generate final predictor (ηfinal) by using Bagging.
7. Consider Fu as test set.
8. Extract snapshots for Fu by using Algorithm 1.
9. Generate features for Fu by using Algorithm 2.
10. Apply test set on the final predictor (ηfinal).
11. Calculate performance of Fu (ACCi, AUCi) [10].
12. End foreach
13. Accuracy: [10]: ACC =

∑U
i=1ACCi

/
U .

14. AUC [10]: AUC =
∑U
i=1AUCi

/
U .

in the proposed method is combining all classifiers (η)
by Bagging [9] algorithm for generating the MVP final
predictive model. Indeed, Bagging method uses the
average of predicted results in (3.20) for generating the

final result (ηfinal =
∑L2
`=L1 η`) [9, 10]. Algorithm 3

shows the whole of procedure in the proposed method
by using Leave-One-Out (LOO) cross-validation in the
subject level.

4 Experiments

4.1 Data Sets This paper utilizes three data sets,
shared by openfmri.org, for running empirical stud-
ies. As the first data set, ‘Visual Object Recognition’
(DS105) includes U = 71 subjects. It also contains
p = 8 categories of visual stimuli, i.e. gray-scale images
of faces, houses, cats, bottles, scissors, shoes, chairs,



Table 1: Accuracy of binary predictors

Data Sets SVM Graph Net Elastic Net L1-Reg. SVM Osher et al. Proposed method

DS105: Objects vs. Scrambles 71.65±0.97 81.27±0.59 83.06±0.36 85.29±0.49 90.82±1.23 94.32±0.16
DS107: Words vs. Others 82.89±1.02 78.03±0.87 88.62±0.52 86.14±0.91 90.21±0.83 92.04±0.09
DS107: Consonants vs. Others 67.84±0.82 83.01±0.56 82.82±0.37 85.69±0.69 84.54±0.99 96.73±0.19
DS107: Objects vs. Others 73.32±1.67 77.93±0.29 84.22±0.44 83.32±0.41 95.62±0.83 93.07±0.27
DS107: Scrambles vs. Others 83.96±0.87 79.37±0.82 87.19±0.26 86.45±0.62 88.1±0.78 90.93±0.71
DS117: Faces vs. Scrambles 81.25±1.03 85.19±0.56 85.46±0.29 86.61±0.61 96.81±0.79 96.31±0.92
ALL: Faces vs. Others 66.27±1.61 68.37±1.31 75.91±0.74 80.23±0.72 84.99±0.71 89.99±0.31
ALL: Objects vs. Others 75.61±0.57 78.37±0.71 76.79±0.94 80.14±0.47 79.23±0.25 92.44±0.92
ALL: Scrambles vs. Others 81.92±0.71 81.08±1.23 84.18±0.42 88.23±0.81 90.5±0.73 95.39±0.18

Table 2: Area Under the ROC Curve (AUC) of binary predictors

Data Sets SVM Graph Net Elastic Net L1-Reg. SVM Osher et al. Proposed method

DS105: Objects vs. Scrambles 68.37±1.01 70.32±0.92 82.22±0.42 80.91±0.21 88.54±0.71 93.25±0.92
DS107: Words vs. Others 80.76±0.91 77.91±1.03 86.35±0.39 84.23±0.57 87.61±0.62 91.86±0.17
DS107: Consonants vs. Others 63.84±1.45 81.21±0.33 80.63±0.61 84.41±0.92 81.54±0.31 94.03±0.37
DS107: Objects vs. Others 70.17±0.59 76.14±0.49 81.54±0.92 80.92±0.28 94.23±0.94 92.14±0.42
DS107: Scrambles vs. Others 80.73±0.92 77±1.01 85.79±0.42 83.14±0.47 82.23±0.38 87.05±0.37
DS117: Faces vs. Scrambles 79.36±0.33 83.71±0.81 83.21±1.23 82.29±0.91 94.08±0.84 94.61±0.71
ALL: Faces vs. Others 61.91±1.2 65.04±0.99 74.9±0.61 78.14±0.83 83.89±0.28 91.05±0.12
ALL: Objects vs. Others 74.19±0.92 77.88±0.82 73.59±0.95 79.45±0.77 75.61±0.89 89.24±0.69
ALL: Scrambles vs. Others 79.81±1.01 80±0.49 82.53±0.83 88.14±0.91 88.93±0.71 92.09±0.28

(A) (B)

(C) (D) (E) (F)

Figure 3: Correlation Matrix: for Visual Object Recog-
nition (DS105) data set (A) in the voxel level, (B) fea-
ture level, for Word and Object Processing (DS107)
data set (C) in the voxel level, (D) feature level, and
for multi-subject, multi-modal human neuroimaging
dataset (DS117) (E) in the voxel level, (F) feature level.

and scrambles (nonsense patterns). This data set is an-
alyzed in high-level visual stimuli as the binary predic-
tor, by considering all categories except nonsense photos
(scramble) as objects. Please see [5, 6, 11, 14, 26] for
more information. As the second data set, ‘Word and

Object Processing’ (DS107) includes U = 98 subjects.
It contains p = 4 categories of visual stimuli, i.e. words,
objects, scrambles, consonants. Please see [27] for more
information. As the last data set, ‘Multi-subject, multi-
modal human neuroimaging dataset’ (DS117) includes
MEG and fMRI images for U = 171 subjects. This
paper just uses the fMRI images of this data set. It
also contains p = 2 categories of visual stimuli, i.e.
human faces, and scrambles. Please see [28] for more
information. These data sets are separately prepro-
cessed by SPM 12 (6685) (www.fil.ion.ucl.ac.uk/spm/),
i.e. slice timing, realignment, normalization, smooth-
ing. This paper employs the Montreal Neurological In-
stitute (MNI) 152 T1 1mm as the reference image (Ref)
in (3.11) for mapping the extracted snapshots to the

standard space (ψ̂i → ψi). The size of this image in
3D scale is X = 182, Y = 218, Z = 182. Moreover, the
Talairach Atlas [29] (including L = 1105 regions) in the
standard space is used in (3.17) for extracting features.
Further, all of algorithms are implemented in the MAT-
LAB R2016b (9.1) on a PC with certain specifications2

by authors in order to generate experimental results.

4.2 Correlation Analysis Figure 3 A, C, and E
respectively demonstrate correlation matrix at the voxel

2DEL , CPU = Intel Xeon E5-2630 v3 (8×2.4 GHz), RAM =
64GB, OS = Elementary OS 0.4 Loki



level for the data sets DS105, DS107, and DS117.
Further, Figure 3 B, D, and F respectively illustrate
the correlation matrix in the feature level for the data
sets DS105, DS107, and DS117. Since neural activities
are sparse, high-dimensional and noisy in voxel level, it
is so hard to discriminate between different categories in
Figure 3 A, C, and E. By contrast, Figure 3 B, D, and
F provide distinctive and informative representation,
when the proposed method used the extracted features.

4.3 Performance Analysis The performance of our
proposed method is compared with state-of-the-art al-
gorithms, which were proposed for decoding the visual
stimuli in the human brain. As a pioneer algorithm,
our method is compared by SVM method [22], which
is used in [6, 11] for decoding the visual stimuli. The
performance of Graph Net [23] and Elastic Net [18]
are reported as the most popular methods for fMRI
analysis [3, 4, 16, 17, 19, 20]. Moreover, the perfor-
mance of L1-Reg. SVM [8] is compared by the pro-
posed method. The L1-Reg. SVM is recently employed
by [3] as the most effective approach for decoding visual
stimuli. Since this paper also applies L1-Reg. SVM for
generating the predictive model in the level of ROIs, it
can be considered as a baseline for comparing our fea-
ture space with the previous approaches. Lastly, Osher
et al. [12] proposed a graph-based approach for cre-
ating predictors. Indeed, they employed the anatomi-
cal structure of the human brain for constructing graph
networks. This paper compares the performance of the
mentioned methods as well as the proposed method by
using LOO cross-validation at the subject level. Fur-
ther, the Gaussian parameter for smoothing the design
matrix is considered σG = 1. The effect of different
values of this parameter on the performance of the pro-
posed method will be discussed in the supplementary
materials.

Table 1 and 2 respectively demonstrate the classifi-
cation Accuracy and Area Under the ROC Curve (AUC)
in percentage (%) for the binary predictors. These ta-
bles report the performance of binary predictors based
on the category of the visual stimuli. All visual stimuli
in the data set DS105 except nonsense photos (scram-
ble) are considered as the object category for generating
these experimental results. In addition, different cate-
gories of visual stimuli (including words, consonants, ob-
jects, and scrambles) in the DS107 are compared by us-
ing one-versus-all strategy. Moreover, face recognition
based on neural activities is trained by using DS117 data
set. Finally, all data sets are combined for generating
predictive models for different categories of visual stim-
uli, i.e. faces, objects, and scrambles. As Table 1 and
2 demonstrate, the proposed algorithm has generated

better performance in comparison with other methods
because it provided a better representation of neural ac-
tivities by exploiting the snapshots of the automatically
detected active regions in the human brain. The last
three rows in Table 1 and 2 illustrate the accuracy of
the proposed method by combining all data sets. As de-
picted in these rows, the performances of other methods
are significantly decreased. As mentioned before, it is
the normalization problem. In addition, our framework
employs the extracted features from the automatically
detected snapshots instead of using all or a group of vox-
els, which can decrease noise and sparsity and remove
high-dimensionality. Therefore, the proposed method
can significantly decrease the time and space complex-
ities and increase rapidly the performance and robust-
ness of the predictive models.

5 Conclusion

As a conjunction between neuroscience and computer
science, Multivariate Pattern (MVP) is mostly used for
analyzing task-based fMRI data set. There is a wide
range of challenges in the MVP techniques, i.e. de-
creasing noise and sparsity, defining effective regions
of interest (ROIs), visualizing results, and the cost of
brain studies. In overcoming these challenges, this pa-
per proposes Multi-Region Neural Representation as a
novel feature space for decoding visual stimuli in the
human brain. The proposed method is applied in three
stages: firstly, snapshots of brain image (each snapshot
represents neural activities for a unique stimulus) are
selected by finding local maximums in the smoothed
version of the design matrix. Then, features are gener-
ated in three steps, including normalizing to standard
space, segmenting the snapshots in the form of automat-
ically detected anatomical regions, and removing noise
by Gaussian smoothing in the level of ROIs. Experi-
mental studies on 4 visual categories (words, objects,
consonants and nonsense photos) clearly show the su-
periority of our proposed method in comparison with
state-of-the-art methods. In addition, the time com-
plexity of the proposed method is naturally lower than
the previous methods because it employs a snapshot
of brain image for each stimulus rather than using the
whole of time series. In future, we plan to apply the
proposed method to different brain tasks such as risk,
emotion and etc.
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