

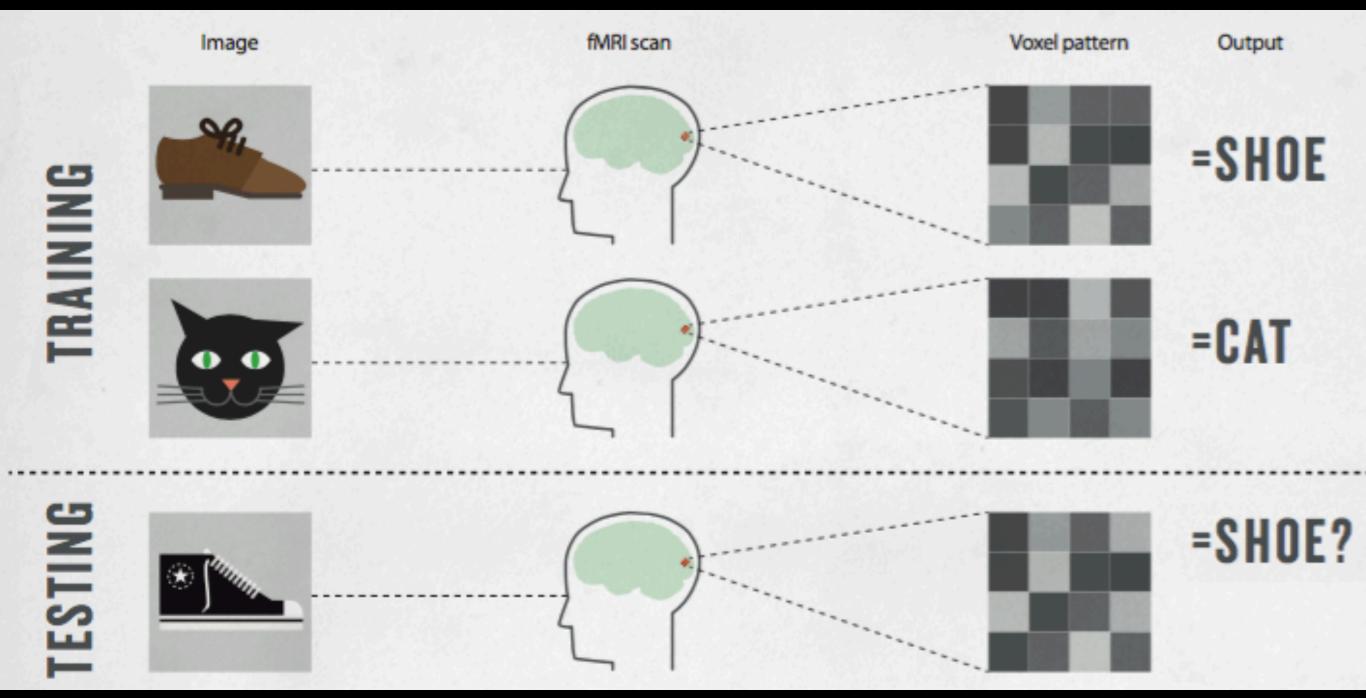
Deep Hyperalignment

Muhammad Yousefnezhad, Daoqiang Zhang 31st Advances in Neural Information Processing Systems (NIPS-17)

Dec 2017

What is Hyperalignment?

Brain Function Analysis

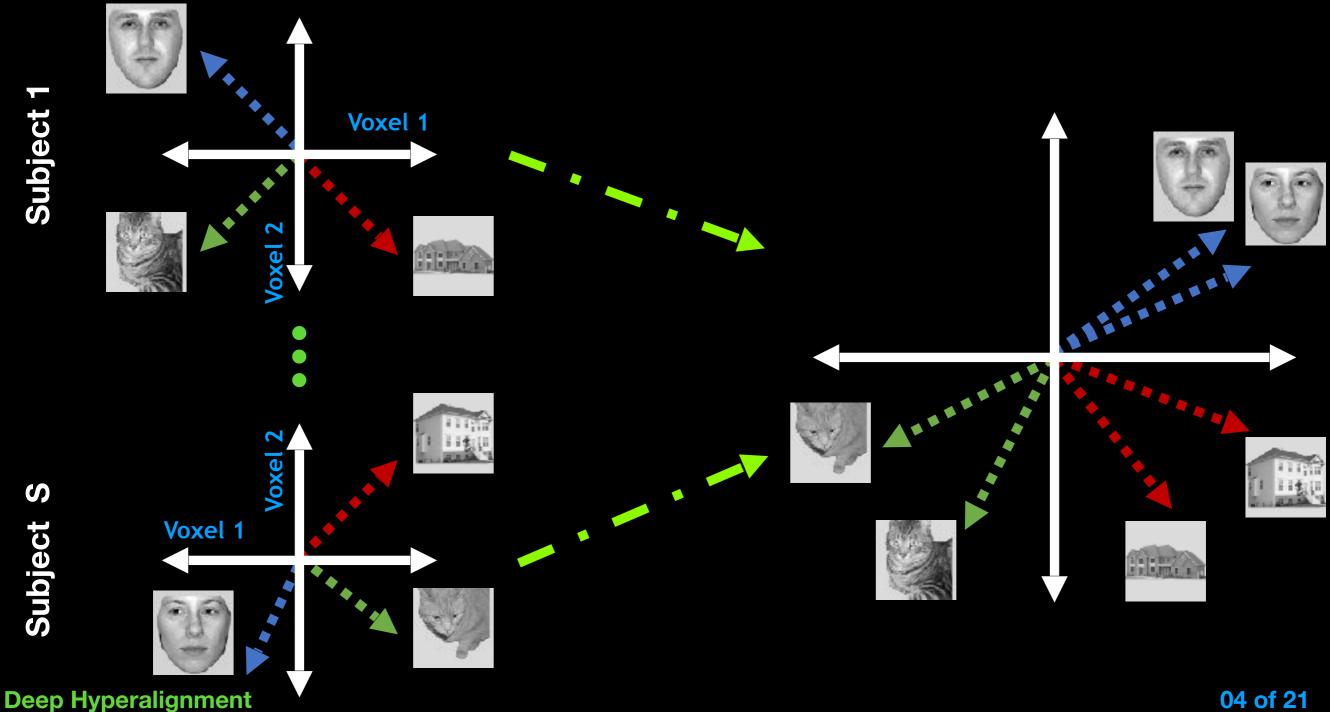


Smith, Nature, 2013

Hyperalignment

Individual Brain Patterns

Common Space (G)



A Generalized Approach

$$\min_{\mathbf{R}^{(i)},\mathbf{R}^{(j)}} \sum_{i=1}^{S} \sum_{j=i+1}^{S} \left\| f(\mathbf{X}^{(i)}) \mathbf{R}^{(i)} - f(\mathbf{X}^{(j)}) \mathbf{R}^{(j)} \right\|_{F}^{2}$$

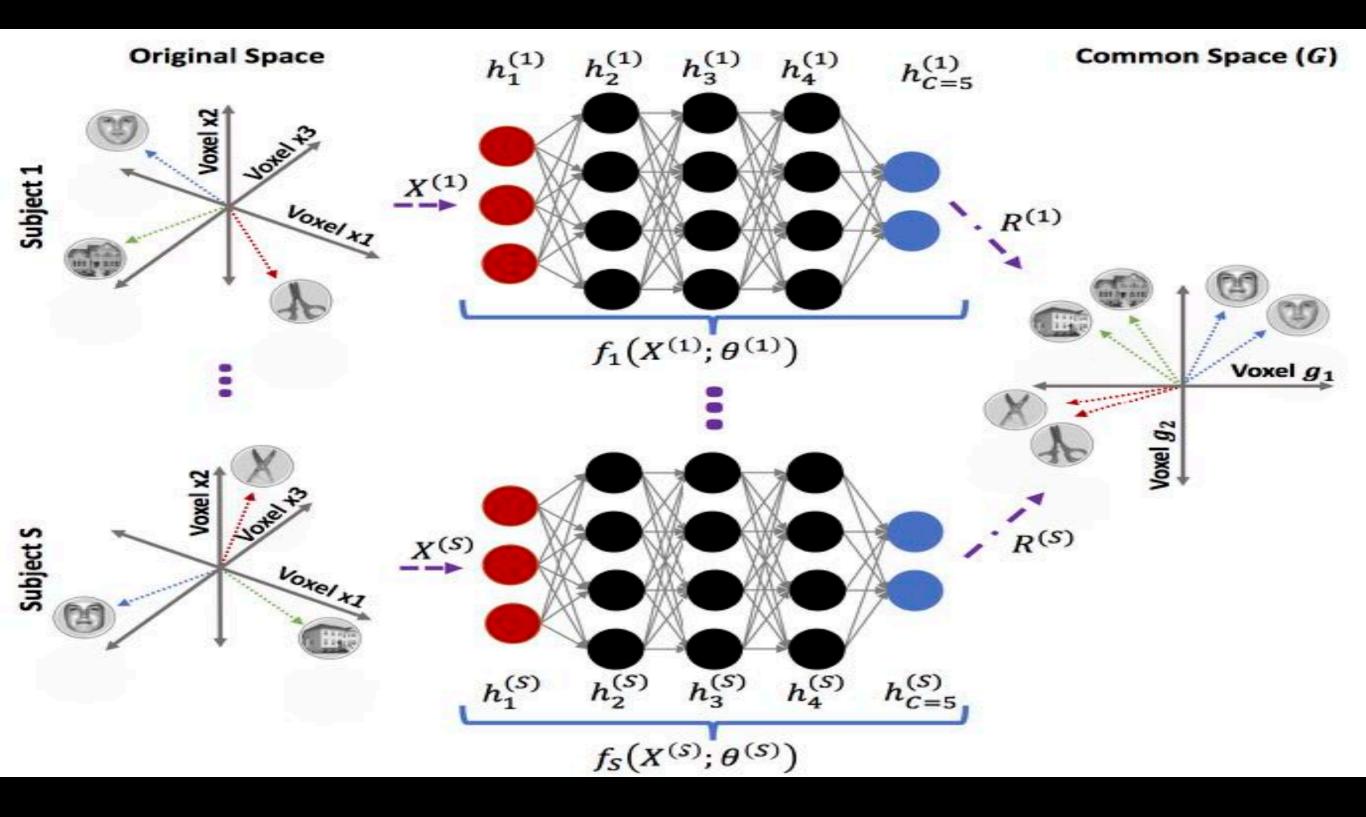
s.t.
$$\left(\mathbf{R}^{(\ell)}\right)^{\mathsf{T}} \left(\left(f\left(\mathbf{X}^{(\ell)}\right) \right)^{\mathsf{T}} f\left(\mathbf{X}^{(\ell)}\right) + \epsilon \mathbf{I} \right) \mathbf{R}^{(\ell)} = \mathbf{I}, \quad \ell = 1:S$$

 \star If $f(\mathbf{x}) = \mathbf{x} \& \epsilon = 0$, then we have the original HA

 $f(\mathbf{x}) = \mathbf{x} \& \epsilon \neq 0$, then we have the Regularized HA

 $f(\mathbf{x})$ is a nonlinear kernel, then we have the Kernel HA

Main Idea



DHA: Objective Function

***** We want to optimize following function:

$$\min_{\substack{\theta^{(i)}, \mathbf{R}^{(i)} \\ \theta^{(j)}, \mathbf{R}^{(j)}}} \sum_{i=1}^{S} \sum_{j=i+1}^{S} \left\| f_i \left(\mathbf{X}^{(i)}; \theta^{(i)} \right) \mathbf{R}^{(i)} - f_j \left(\mathbf{X}^{(j)}; \theta^{(j)} \right) \mathbf{R}^{(j)} \right\|_F^2$$

s.t.
$$\left(\mathbf{R}^{(\ell)}\right)^{\mathsf{T}} \left(\left(f_{\ell} \left(\mathbf{X}^{(\ell)}; \theta^{(\ell)} \right) \right)^{\mathsf{T}} f_{\ell} \left(\mathbf{X}^{(\ell)}; \theta^{(\ell)} \right) + \epsilon \mathbf{I} \right) \mathbf{R}^{(\ell)} = \mathbf{I}, \quad \ell = 1:S$$

where the deep network is defined as follows:

$$f_{\ell}(\mathbf{X}^{(\ell)}; \theta^{(\ell)}) = \mathsf{mat}(\mathbf{h}_{C}^{(\ell)}, T, V_{new})$$

 $\mathbf{h}_m^{(\ell)} = \mathbf{g} \Big(\mathbf{W}_m^{(\ell)} \mathbf{h}_{m-1}^{(\ell)} + \mathbf{b}_m^{(\ell)} \Big), \quad \text{where} \quad \mathbf{h}_1^{(\ell)} = \mathbf{vec} \big(\mathbf{X}^{(\ell)} \big) \quad \text{and} \quad m = 2:C$

Generalized DHA

$$\min_{\mathbf{G}, \mathbf{R}^{(i)}, \theta^{(i)}} \sum_{i=1}^{S} \left\| \mathbf{G} - f_i (\mathbf{X}^{(i)}; \theta^{(i)}) \mathbf{R}^{(i)} \right\|_{F}^{2}$$

s.t. $\mathbf{G}^{\mathsf{T}}\mathbf{G} = \mathbf{I}$

where

$$\mathbf{G} = \frac{1}{S} \sum_{j=1}^{S} f_j (\mathbf{X}^{(j)}; \boldsymbol{\theta}^{(j)}) \mathbf{R}^{(j)}$$

DHA: Optimization

rank-m SVD

Deep

 $f_{\ell}(\mathbf{X}^{(\ell)};\boldsymbol{\theta}^{(\ell)}) \stackrel{SVD}{=} \boldsymbol{\Omega}^{(\ell)} \boldsymbol{\Sigma}^{(\ell)} (\boldsymbol{\Psi}^{(\ell)})^{\mathsf{T}}, \qquad \ell = 1:S$

***** Projection Matrix

 $\mathbf{P}^{(\ell)} = f_{\ell} \left(\mathbf{X}^{(\ell)}; \theta^{(\ell)} \right) \left(\left(f_{\ell} \left(\mathbf{X}^{(\ell)}; \theta^{(\ell)} \right) \right)^{\mathsf{T}} f_{\ell} \left(\mathbf{X}^{(\ell)}; \theta^{(\ell)} \right) + \epsilon \mathbf{I} \right)^{-1} \left(f_{\ell} \left(\mathbf{X}^{(\ell)}; \theta^{(\ell)} \right) \right)^{\mathsf{T}} \\ = \mathbf{\Omega}^{(\ell)} \left(\mathbf{\Sigma}^{(\ell)} \right)^{\mathsf{T}} \left(\mathbf{\Sigma}^{(\ell)} \left(\mathbf{\Sigma}^{(\ell)} \right)^{\mathsf{T}} + \epsilon \mathbf{I} \right)^{-1} \mathbf{\Sigma}^{(\ell)} \left(\mathbf{\Omega}^{(\ell)} \right)^{\mathsf{T}} = \mathbf{\Omega}^{(\ell)} \mathbf{D}^{(\ell)} \left(\mathbf{\Omega}^{(\ell)} \mathbf{D}^{(\ell)} \right)^{\mathsf{T}}$

where $\mathbf{D}^{(\ell)}(\mathbf{D}^{(\ell)})^{\mathsf{T}} = (\mathbf{\Sigma}^{(\ell)})^{\mathsf{T}}(\mathbf{\Sigma}^{(\ell)}(\mathbf{\Sigma}^{(\ell)})^{\mathsf{T}} + \epsilon \mathbf{I})^{-1}\mathbf{\Sigma}^{(\ell)}$.

Sum of Projection Matrices

$$\mathbf{A} = \sum_{i=1}^{S} \mathbf{P}^{(i)} = \widetilde{\mathbf{A}} \widetilde{\mathbf{A}}^{\top}, \quad \text{where} \quad \widetilde{\mathbf{A}} \in \mathbb{R}^{T \times mS} = \begin{bmatrix} \mathbf{\Omega}^{(1)} \mathbf{D}^{(1)} \dots \mathbf{\Omega}^{(S)} \mathbf{D}^{(S)} \end{bmatrix}.$$
Hyperalignment Cholesky Decomposition

10 of 21

DHA: Optimization

Objective Function can be reformulated as follows:

$$\min_{\mathbf{G}, \mathbf{R}^{(i)}, \theta^{(i)}} \sum_{i=1}^{S} \left\| \mathbf{G} - f_i \left(\mathbf{X}^{(i)}; \theta^{(i)} \right) \mathbf{R}^{(i)} \right\| \equiv \max_{\mathbf{G}} \left(\mathsf{tr} \left(\mathbf{G}^{\mathsf{T}} \mathbf{A} \mathbf{G} \right) \right).$$

***** So, we have:

AG = GA, where
$$\Lambda = \{\lambda_1 ... \lambda_T\}$$

$$\widetilde{\mathbf{A}} = \widetilde{\mathbf{G}} \widetilde{\Sigma} \widetilde{\Psi}^{\top} \longrightarrow \text{Incremental PCA}$$

DHA mappings can be calculated as follows:

$$\mathbf{R}^{(\ell)} = \left(\left(f_{\ell} \left(\mathbf{X}^{(\ell)}; \theta^{(\ell)} \right) \right)^{\mathsf{T}} f_{\ell} \left(\mathbf{X}^{(\ell)}; \theta^{(\ell)} \right) + \epsilon \mathbf{I} \right)^{-1} \left(f_{\ell} \left(\mathbf{X}^{(\ell)}; \theta^{(\ell)} \right) \right)^{\mathsf{T}} \mathbf{G} \,.$$

DHA: Optimization

 In order to use back-propagation algorithm for seeking an optimized parameters for the deep network, we also have:

$$\frac{\partial \mathbf{Z}}{\partial f_{\ell}(\mathbf{X}^{(\ell)};\boldsymbol{\theta}^{(\ell)})} = 2\mathbf{R}^{(\ell)}\mathbf{G}^{\top} - 2\mathbf{R}^{(\ell)}(\mathbf{R}^{(\ell)})^{\top} \left(f_{\ell}(\mathbf{X}^{(\ell)};\boldsymbol{\theta}^{(\ell)})\right)^{\top}.$$

where

$$\mathbf{Z} = \sum_{\ell=1}^{T} \lambda_{\ell}$$

Empirical Studies

Datasets

Table S2: The datasets.

Title	ID	S	Κ	Т	V	Х	Y	Ζ	Scanner	TR	TE
Mixed-gambles task	DS005	48	2	240	450	53	63	52	S 3T	2	30
Visual Object Recognition	DS105	71	8	121	1963	79	95	79	G 3T	2.5	30
Word and Object Processing	DS107	98	4	164	932	53	63	52	S 3T	2	28
Auditory and Visual Oddball	DS116	102	2	170	2532	53	63	40	P 3T	2	25
Multi-subject, multi-modal	DS117	171	2	210	524	64	61	33	S 3T	2	30
Forrest Gump	DS113	20	10	451	2400	160	160	36	S 7T	2.3	22
Raiders of the Lost Ark	N/A	10	7	924	980	78	78	54	S 3T	3	30

S is the number of subject; K denotes the number of stimulus categories; T is the number of scans in unites of TRs (Time of Repetition); V denotes the number of voxels in ROI; X, Y, Z are the size of 3D images; Scanners include S=Siemens, G = General Electric, and P = Philips in 3 Tesla or 7 Tesla; TR is Time of Repetition in millisecond; TE denotes Echo Time in second; Please see *openfmri.org* for more information.

Simple Tasks Analysis

Table 1: Accuracy of HA methods in post-alignment classification by using simple task datasets

\downarrow Algorithms, Datasets \rightarrow	DS005	DS105	DS107	DS116	DS117
ν-SVM [17]	71.65 ± 0.97	22.89 ± 1.02	38.84 ± 0.82	67.26±1.99	73.32 ± 1.67
HA [1]	$81.27 {\pm} 0.59$	$30.03 {\pm} 0.87$	43.01 ± 0.56	74.23 ± 1.40	$77.93 {\pm} 0.29$
RHA [2]	$83.06 {\pm} 0.36$	32.62 ± 0.52	46.82 ± 0.37	78.71 ± 0.76	84.22 ± 0.44
KHA [3]	$85.29 {\pm} 0.49$	37.14 ± 0.91	$52.69 {\pm} 0.69$	$78.03 {\pm} 0.89$	$83.32 {\pm} 0.41$
SVD-HA [4]	90.82 ± 1.23	40.21 ± 0.83	59.54 ± 0.99	$81.56 {\pm} 0.54$	95.62 ± 0.83
SRM [5]	$91.26 {\pm} 0.34$	48.77 ± 0.94	64.11 ± 0.37	$83.31 {\pm} 0.73$	$95.01 {\pm} 0.64$
SL [9]	90.21 ± 0.61	$49.86 {\pm} 0.4$	$64.07 {\pm} 0.98$	$82.32 {\pm} 0.28$	94.96 ± 0.24
CAE [6]	$94.25 {\pm} 0.76$	$54.52 {\pm} 0.80$	72.16 ± 0.43	91.49±0.67	$95.92 {\pm} 0.67$
DHA	97.92±0.82	60.39±0.68	73.05±0.63	$90.28 {\pm} 0.71$	97.99±0.94

Table 2: Area under the ROC curve (AUC) of different HA methods in post-alignment classification by using simple task datasets

\downarrow Algorithms, Datasets \rightarrow	DS005	DS105	DS107	DS116	DS117
ν-SVM [17]	68.37±1.01	21.76±0.91	$36.84{\pm}1.45$	62.49±1.34	70.17±0.59
HA [1]	$70.32 {\pm} 0.92$	28.91 ± 1.03	40.21 ± 0.33	$70.67 {\pm} 0.97$	$76.14 {\pm} 0.49$
RHA [2]	82.22 ± 0.42	$30.35 {\pm} 0.39$	43.63 ± 0.61	76.34 ± 0.45	$81.54 {\pm} 0.92$
KHA [3]	$80.91 {\pm} 0.21$	$36.23 {\pm} 0.57$	50.41 ± 0.92	$75.28 {\pm} 0.94$	$80.92 {\pm} 0.28$
SVD-HA [4]	$88.54 {\pm} 0.71$	37.61 ± 0.62	$57.54 {\pm} 0.31$	$78.66 {\pm} 0.82$	92.14 ± 0.42
SRM [5]	$90.23 {\pm} 0.74$	$44.48 {\pm} 0.75$	62.41 ± 0.72	$79.20 {\pm} 0.98$	$93.65 {\pm} 0.93$
SL [9]	$89.79 {\pm} 0.25$	47.32 ± 0.92	$61.84{\pm}0.32$	$80.63 {\pm} 0.81$	93.26 ± 0.72
CAE [6]	$91.24{\pm}0.61$	52.16 ± 0.63	72.33±0.79	$87.53 {\pm} 0.72$	$91.49 {\pm} 0.33$
DHA	96.91±0.82	59.57±0.32	70.23 ± 0.92	89.93±0.24	96.13±0.32

Complex Tasks Analysis

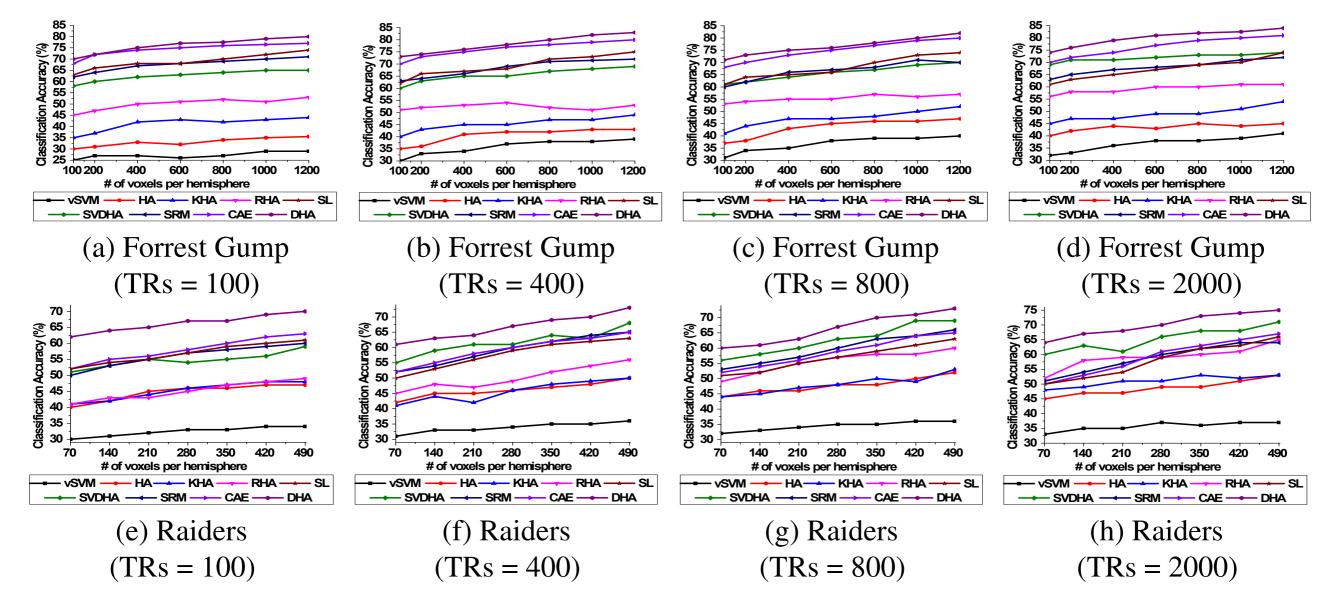
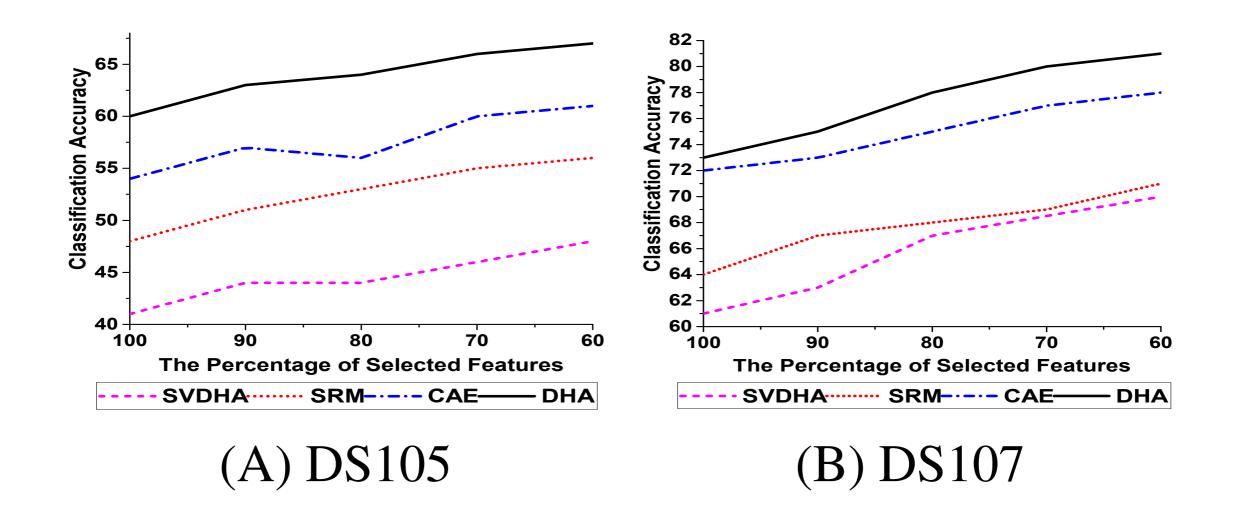
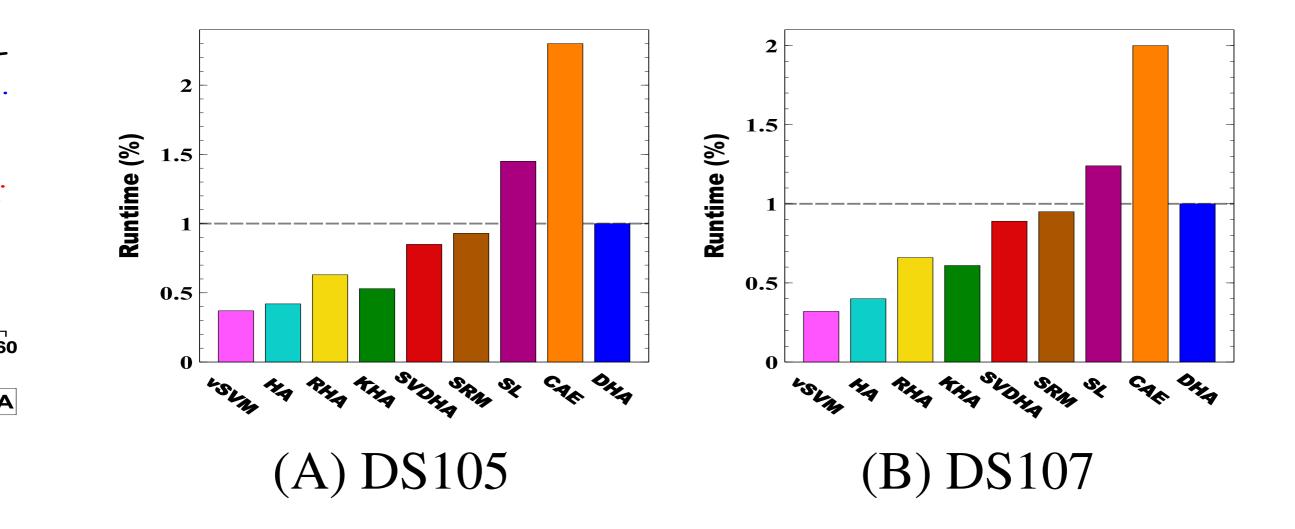


Figure 1: Comparison of different HA algorithms on complex task datasets by using ranked voxels.

Classification analysis by using feature selection



Runtime Analysis



18 of 21

Future Works

Future Works

- This paper extended a deep approach for hyperalignment methods in order to provide accurate functional alignment in multi-subject fMRI analysis.
- * Deep Hyperalignment (DHA) can handle fMRI datasets with nonlinearity, high-dimensionality (broad ROI), and a large number of subjects. Further, its time complexity fairly scales with data size and the training data is not referenced when DHA computes the functional alignment for a new subject.
- In the future, we will plan to employ DHA for improving the performance of other techniques in fMRI analysis, e.g. Representational Similarity Analysis (RSA).

Thank You! Q & A

For more details, contact: myousefnezhad@nuaa.edu.cn myousefnezhad@outlook.com https://myousefnezhad.github.io/