

Deep Hyperalignment

Muhammad Yousefnezhad, Daoqiang Zhang

School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

MOTIVATION

★ A generalized approach for classical Hyperalignment (HA):

$$\min_{\mathbf{R}^{(i)},\mathbf{R}^{(j)}} \sum_{i=1}^{S} \sum_{j=i+1}^{S} \left\| f(\mathbf{X}^{(i)}) \mathbf{R}^{(i)} - f(\mathbf{X}^{(j)}) \mathbf{R}^{(j)} \right\|_{F}^{2}$$

s.t. $\left(\mathbf{R}^{(\ell)} \right)^{\mathsf{T}} \left(\left(f\left(\mathbf{X}^{(\ell)} \right) \right)^{\mathsf{T}} f\left(\mathbf{X}^{(\ell)} \right) + \epsilon \mathbf{I} \right) \mathbf{R}^{(\ell)} = \mathbf{I}, \quad \ell = 1:S$

DATASETS

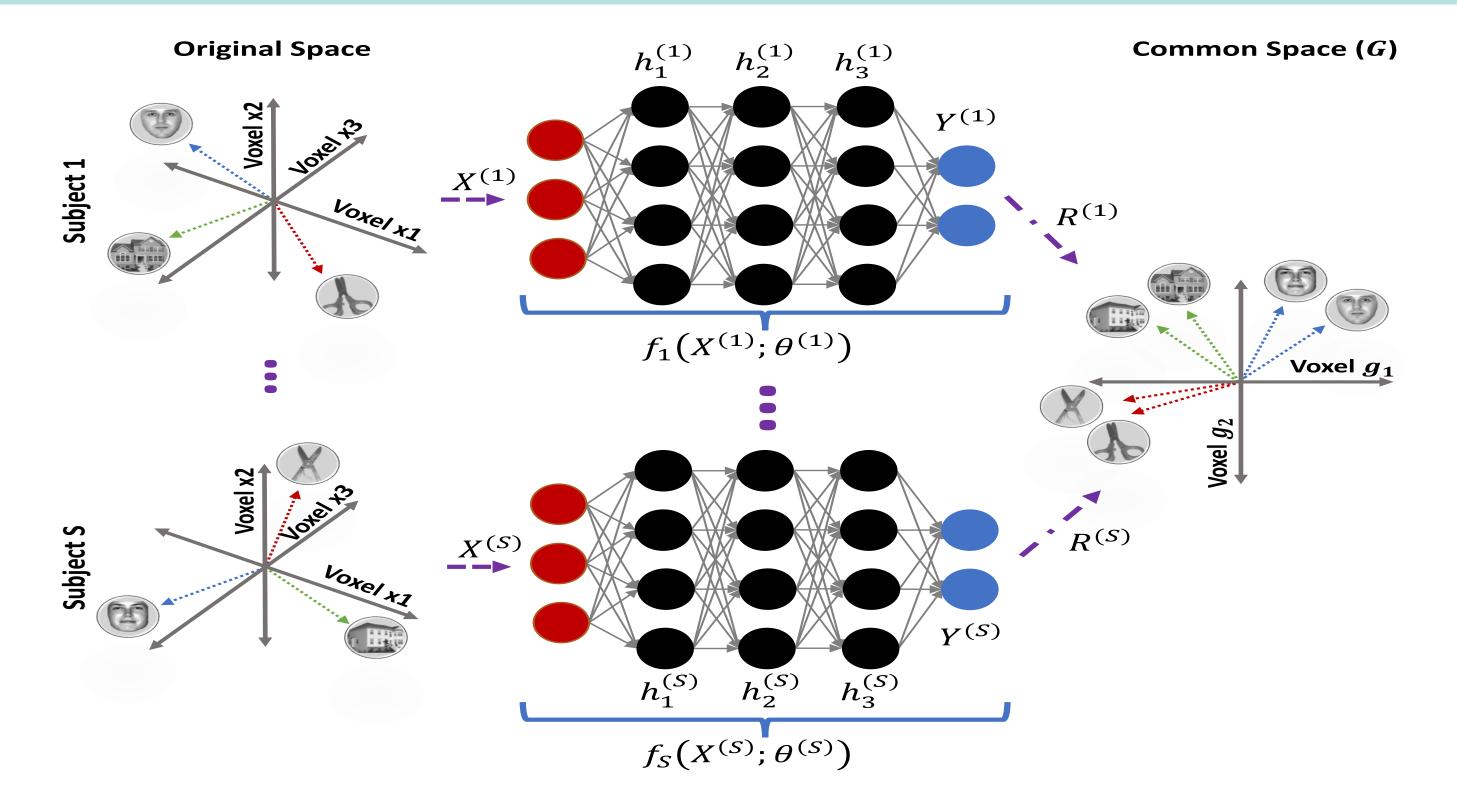
★ This paper utilizes 7 datasets for running empirical studies:

Title	ID	S	K	Т	V	Х	Y	Ζ	Scanner	TR	TE
Mixed-gambles task	DS005	48	2	240	450	53	63	52	S 3T	2	30
Visual Object Recognition	DS105	71	8	121	1963	79	95	79	G 3T	2.5	30
Word and Object Processing	DS107	98	4	164	932	53	63	52	S 3T	2	28
Auditory and Visual Oddball	DS116	102	2	170	2532	53	63	40	P 3T	2	25
Multi-subject, multi-modal	DS117	171	2	210	524	64	61	33	S 3T	2	30
Forrest Gump	DS113	20	10	451	2400	160	160	36	S 7T	2.3	22
Raiders of the Lost Ark	N/A	10	7	924	980	78	78	54	S 3T	3	30

S is the number of subject; K denotes the number of stimulus categories; T is the number of scans in unites of TRs (Time of Repetition); V denotes the number of voxels in ROI; X, Y, Z are the size of 3D images; Scanners include S=Siemens, G = General Electric, and P = Philips in 3 Tesla or 7 Tesla; TR is Time of Repetition in millisecond; TE denotes Echo Time in second; Please see *openfmri.org* for more information.

If $f(\mathbf{x}) = \mathbf{x} \& \epsilon = 0$, then we have the original HA If $f(\mathbf{x}) = \mathbf{x} \ \mathbf{\&} \ \epsilon \neq 0$, then we have the Regularized HA If $f(\mathbf{x})$ is a nonlinear kernel, then we have the Kernel HA

→ These methods are limited by a restricted fixed kernel function.



Graphical abstract of Deep Hyperalignment (DHA)

EXPERIMENTAL RESULTS

★ Simple Tasks Analysis:

Table 1: Accuracy of HA methods in post-alignment classification by using simple task datasets

\downarrow Algorithms, Datasets \rightarrow	DS005	DS105	DS107	DS116	DS117
ν-SVM [17]	71.65 ± 0.97	22.89 ± 1.02	38.84 ± 0.82	67.26 ± 1.99	73.32 ± 1.67
HA [1]	$81.27 {\pm} 0.59$	$30.03 {\pm} 0.87$	43.01 ± 0.56	74.23 ± 1.40	$77.93 {\pm} 0.29$
RHA [2]	$83.06 {\pm} 0.36$	32.62 ± 0.52	46.82 ± 0.37	78.71 ± 0.76	84.22 ± 0.44
KHA [3]	$85.29 {\pm} 0.49$	$37.14 {\pm} 0.91$	52.69 ± 0.69	$78.03 {\pm} 0.89$	$83.32 {\pm} 0.41$
SVD-HA [4]	90.82 ± 1.23	40.21 ± 0.83	59.54 ± 0.99	$81.56 {\pm} 0.54$	95.62 ± 0.83
SRM [5]	$91.26 {\pm} 0.34$	$48.77 {\pm} 0.94$	64.11 ± 0.37	83.31 ± 0.73	$95.01 {\pm} 0.64$
SL [9]	90.21 ± 0.61	$49.86 {\pm} 0.4$	$64.07 {\pm} 0.98$	$82.32 {\pm} 0.28$	$94.96 {\pm} 0.24$
CAE [6]	$94.25 {\pm} 0.76$	$54.52 {\pm} 0.80$	72.16 ± 0.43	91.49±0.67	$95.92 {\pm} 0.67$
DHA	97.92±0.82	60.39±0.68	$73.05 {\pm} 0.63$	$90.28 {\pm} 0.71$	97.99±0.94

Table 2: Area under the ROC curve (AUC) of different HA methods in post-alignment classification by using simple task datasets

\downarrow Algorithms, Datasets \rightarrow	DS005	DS105	DS107	DS116	DS117
ν-SVM [17]	68.37 ± 1.01	21.76 ± 0.91	$36.84{\pm}1.45$	62.49 ± 1.34	70.17 ± 0.59
HA [1]	$70.32 {\pm} 0.92$	28.91 ± 1.03	40.21 ± 0.33	$70.67 {\pm} 0.97$	$76.14 {\pm} 0.49$
RHA [2]	82.22 ± 0.42	30.35 ± 0.39	43.63 ± 0.61	76.34 ± 0.45	$81.54 {\pm} 0.92$
KHA [3]	$80.91 {\pm} 0.21$	$36.23 {\pm} 0.57$	50.41 ± 0.92	$75.28 {\pm} 0.94$	$80.92 {\pm} 0.28$
SVD-HA [4]	$88.54 {\pm} 0.71$	37.61 ± 0.62	57.54 ± 0.31	$78.66 {\pm} 0.82$	92.14 ± 0.42
	00.02 ± 0.74	1110 - 75	(0, 11 + 0, 70)	70.20 ± 0.00	02(5 + 0.02)

METHOD

 $\mathbf{X}^{(\ell)}$:

 $\mathbf{R}^{(\ell)}$:

denotes brain activities

is DHA mapping

s.t. $\mathbf{G}^{\mathsf{T}}\mathbf{G} = \mathbf{I}$

Network Parameters

Nonlinear Function

of hidden layers

of voxels after mapping

 $\theta^{(\ell)}$:

Vnew:

g():

C:

T:

★ Objective Function:

$$\min_{\mathbf{G}, \mathbf{R}^{(i)}, \theta^{(i)}} \sum_{i=1}^{S} \left\| \mathbf{G} - f_i (\mathbf{X}^{(i)}; \theta^{(i)}) \mathbf{R}^{(i)} \right\|_F^2$$

Shared Space:
$$\mathbf{G} = \frac{1}{S} \sum_{j=1}^{S} f_j (\mathbf{X}^{(j)}; \theta^{(j)}) \mathbf{R}^{(j)}$$

where Deep network is defined as follows:

$$f_{\ell}(\mathbf{X}^{(\ell)}; \theta^{(\ell)}) = \mathsf{mat}\left(\mathbf{h}_{C}^{(\ell)}, T, V_{new}\right)$$

$$\mathbf{h}_{m}^{(\ell)} = \mathsf{g}\left(\mathbf{W}_{m}^{(\ell)}\mathbf{h}_{m-1}^{(\ell)} + \mathbf{b}_{m}^{(\ell)}\right), \quad \text{where} \quad \mathbf{h}_{1}^{(\ell)} = \mathsf{vec}\left(\mathbf{X}^{(\ell)}\right) \quad \text{and} \quad m = 2:C$$

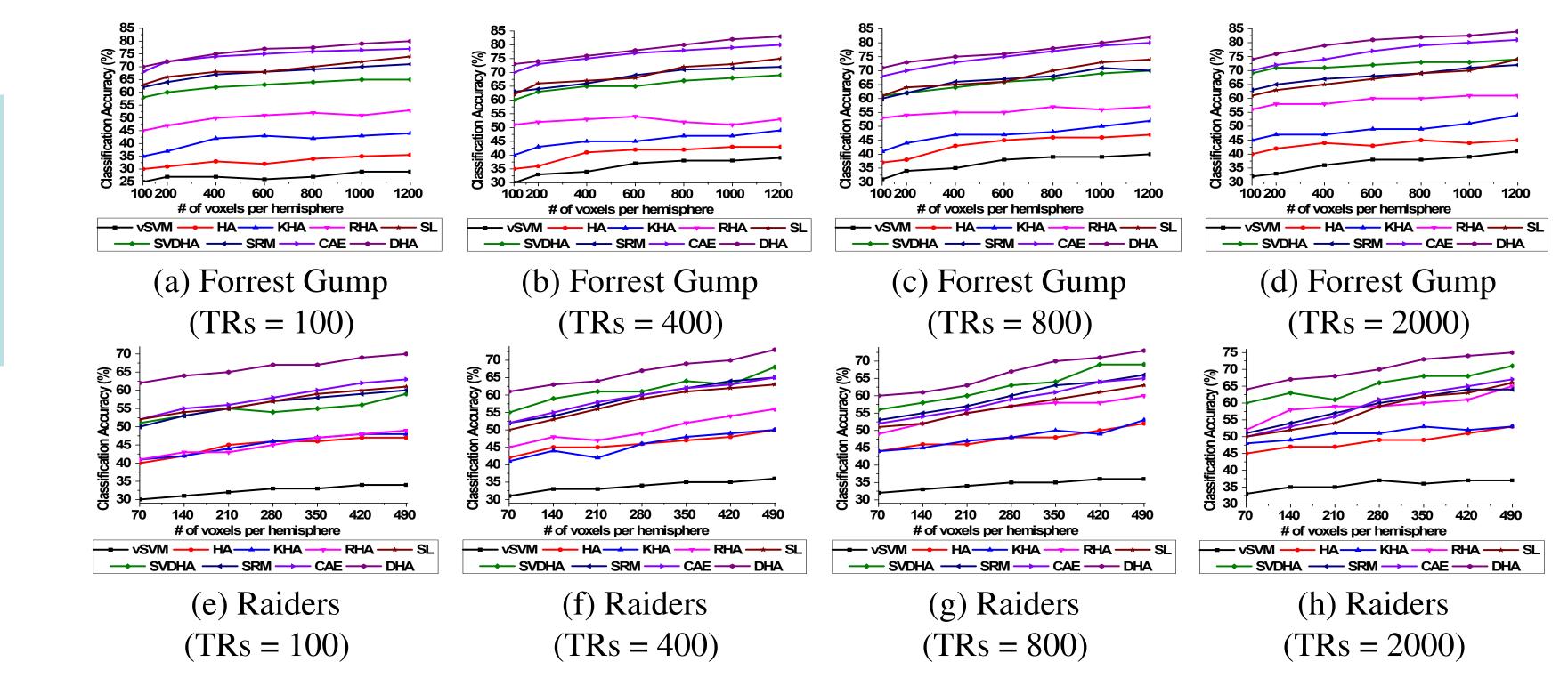
★ Optimization:

STEP 1: DHA shared space can be calculated as follows:

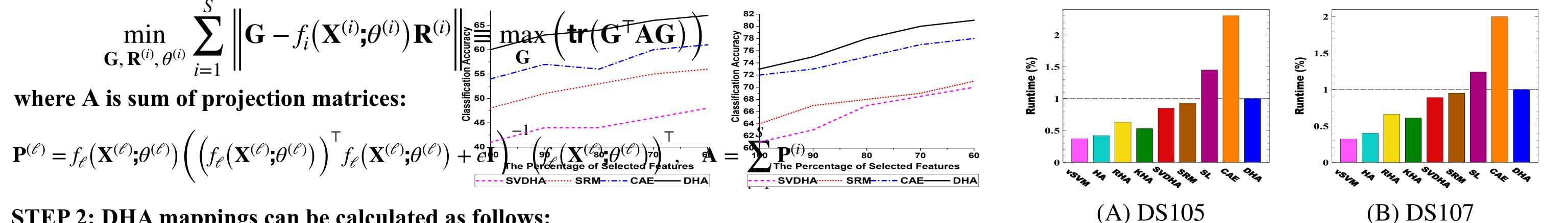
 $(\mathbf{X}^{(i)}; \theta^{(i)}) \mathbf{R}^{(i)} \ge \mathbf{B}^{\mathbf{S}}$

 44.48 ± 0.75 62.41 ± 0.72 SRM [5] 90.23 ± 0.74 79.20 ± 0.98 93.65 ± 0.93 SL [9] 47.32 ± 0.92 61.84 ± 0.32 93.26 ± 0.72 89.79 ± 0.25 80.63 ± 0.81 91.24 ± 0.61 52.16 ± 0.63 72.33±0.79 87.53 ± 0.72 91.49 ± 0.33 CAE [6] 96.91±0.82 59.57±0.32 70.23 ± 0.92 89.93±0.24 96.13±0.32 DHA

★ Complex Tasks Analysis:



★ Runtime Analysis:



STEP 2: DHA mappings can be calculated as follows:

$$\mathbf{R}^{(\ell)} = \left(\left(f_{\ell} \left(\mathbf{X}^{(\ell)}; \theta^{(\ell)} \right) \right)^{\mathsf{T}} f_{\ell} \left(\mathbf{X}^{(\ell)}; \theta^{(\ell)} \right) + \epsilon \mathbf{I} \right)^{-1} \left(f_{\ell} \left(\mathbf{X}^{(\ell)}; \theta^{(\ell)} \right) \right)^{\mathsf{T}} \mathbf{G} \,.$$

STEP 3: Deep Network parameters can be iteratively calculated as follows sing SGD: $\theta^{(\ell)} \leftarrow \theta^{(\ell)} - \eta \nabla \theta^{(\ell)}, \quad \text{where} \quad \mathbf{Z} = \sum_{\ell=1}^{T} \lambda_{\ell} \quad \text{and}$ $\frac{\partial \mathbf{Z}}{\partial f_{\ell}(\mathbf{X}^{(\ell)}; \theta^{(\ell)})} = 2\mathbf{R}^{(\ell)}\mathbf{G}^{\top} - 2\mathbf{R}^{(\ell)}(\mathbf{R}^{(\ell)})^{\top} (f_{\ell}(\mathbf{X}^{(\ell)}; \theta^{(\ell)}))^{\top}.$ by using SGD:

CONCLUSION

This paper extended a deep approach for hyperalignment methods in order to provide accurate functional alignment in multi-subject fMRI analysis. Deep Hyperalignment (DHA) can handle fMRI datasets with nonlinearity, high-dimensionality (broad ROI), and a large number of subjects. DHA is parametric and uses rank-\$m\$ SVD and stochastic gradient descent for optimization. Experimental studies on multi-subject fMRI datasets confirm that the DHA method achieves superior performance to other state-of-the-art HA algorithms. In the future, we will plan to employ DHA for improving the performance of other techniques in fMRI analysis, e.g. Representational Similarity Analysis (RSA), multi-modality, and hub detection.