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Abstract In order to decode human brain, Multivariate
Pattern (MVP) classification generates cognitive models
by using functional Magnetic Resonance Imaging (fMRI)
datasets. As a standard pipeline in the MVP analysis, brain
patterns in multi-subject fMRI dataset must be mapped to a
shared space and then a classification model is generated by
employing the mapped patterns. However, the MVP models
may not provide stable performance on a new fMRI dataset
because the standard pipeline uses disjoint steps for gen-
erating these models. Indeed, each step in the pipeline in-
cludes an objective function with independent optimization
approach, where the best solution of each step may not be
optimum for the next steps. For tackling the mentioned is-
sue, this paper introduces Multi-Objective Cognitive Model
(MOCM) that utilizes an integrated objective function for
MVP analysis rather than just using those disjoint steps. For
solving the integrated problem, we proposed a customized
multi-objective optimization approach, where all possible
solutions are firstly generated, and then our method ranks
and selects the robust solutions as the final results. Empir-
ical studies confirm that the proposed method can generate
superior performance in comparison with other techniques.

Keywords Multi-Objective Cognitive Model · fMRI Anal-
ysis ·Multivariate Pattern ·Multi-Objective Optimization

1 Introduction

One of the primary goals in neuroscience is to understand
how the neural activities in the human brain can be mapped
to different cognitive tasks. Analyzing task-based functional
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Magnetic Resonance Imaging (fMRI) data is an interdis-
ciplinary technique. Almost all supervised applications of
fMRI analysis explicitly or implicitly employ Multivariate
Pattern (MVP) algorithms for extracting and decoding brain
patterns [42]. In practice, MVP analysis can be formulated
as a classification problem and predict patterns of neural re-
sponses, which are generated by distinctive cognitive tasks
[41]. In order to elaborate the brain mapping technique,
imagine a subject watched two different categories of visual
stimuli, including photos of cats and human faces, and we
collected the neural activities in the form of fMRI dataset.
Then, we have employed a subset of this data for training
an MVP classification model in order to predict the cate-
gories (human face or cat) in the rest of stimuli (that are
unseen in the training procedure). As the final product of an
MVP analysis, decision surfaces are defined to distinguish
the neural activities that belong to different categories of
stimuli [19]. Decision surfaces can be used to understand
mental diseases [41,42].

In practice, fMRI analysis is a challenging problem.
Cognitive models generated by MVP methods must be vali-
dated by employing multi-subject fMRI images [5,7,26,41].
There are mainly two steps in an MVP standard pipeline,
which must be applied to preprocessed fMRI images to gen-
erate the cognitive models, i.e., functional alignment, classi-
fication analysis [42]. Further, each of these main steps can
include some subtasks, such as applying feature selection
before classification analysis [5,42]. Different human brains
naturally generate distinctive patterns [41,20]. The general
assumption in the brain decoding is that the generated pat-
terns are noisy ‘rotation’ of a shared space [5,19,26,41].
Functional alignment seeks this space for mapping the neu-
ral activities before generating the cognitive models [19]. As
one of the common subtask in functional alignment, non-
linear kernel functions are employed to improve the perfor-
mance of the alignment [26]. The next step in the standard
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pipeline is employing binary classification methods, such as
regularized Support Vector Machine (SVM) algorithm, for
generating the cognitive models, i.e., decision surfaces [5,
19,26,29,41,42]. Feature selection is a usual subtask, which
must be applied before the classification analysis, to reduce
the sparsity problem and increase the performance of the fi-
nal model [6].

However, recent studies demonstrated that most of the
models that generated by the standard pipeline cannot pro-
vide stable performance on the new fMRI datasets [1,7,14,
32]. As discussed before, there are different steps (including
the steps and subtasks) for MVP analysis. The main prob-
lem is that these steps employ disjoint objective functions,
which are separately run to generate a cognitive model [42]
and there is no unique solution for each of these objective
functions [5]. Therefore, an optimal result in one of these
steps may not be optimum for the next steps. The problem
gets worse when each step uses an independent optimiza-
tion strategy, which cannot update the result of the previous
steps based on the errors of current step to improve the per-
formance of the MVP analysis. Indeed, this is a prevalent
issue in the optimization problems, which is called domi-
nant [12,24,25,43]. In other words, if we have distinctive
solutions, the ideal solution for each step not only must be
an optimal solution for that step but also it must be optimum
for all of the next steps.

The main contributions of this paper are threefold: it
firstly reformulates different steps of MVP pipeline as an
integrated multi-objective problem, which is called Multi-
Objective Cognitive Model (MOCM). We also introduce the
novel concept of Intra-subject functional alignment, which
can separately track the alignment error for each subject.
Further, a customized optimization approach is developed
for solving the integrated problem by incorporating the idea
of non-dominated sorting into the multi-indicator algorithm.
Indeed, non-dominated sorting seeks Pareto optimal solu-
tions, and then indicators rank the robust solutions as the
final results.

In this paper, Section 2 briefly reviews some related
works. Section 3 introduces the proposed method. Section
4 reports empirical studies. Finally, Section 5 presents con-
clusion and pointed out some future studies.

2 Background

Since task-based fMRI datasets can provide better spatial
resolution in comparison with other modalities, most of
the previous studies employed fMRI datasets in order to
study human brains [19]. A crucial step in fMRI analy-
sis is creating a model that is generalized across subjects
[5,6,7,18,20,39,41]. In other words, utilizing multi-subject
fMRI data is necessary to validate the generated results
across subjects [20,41]. However, functional neural images

require precise alignment for boosting the performance of
the final model [6,20,41]. In practice, they are two primary
alignment approaches, including anatomical alignment and
functional alignment, that must work in unison [20,39].
Indeed, anatomical alignment is a classical technique for
preprocessing fMRI images. However, the performance of
the anatomical alignment is limited based on the location,
shape, and size of the functional loci [34,38]. By contrast,
functional alignment does not suffer the mentioned issues in
the anatomical alignment [20].

Hyperalignment (HA), as the most prevalent approaches
for applying functional alignment, is an ‘anatomy free’ tech-
nique that can be written as a Canonical Correlation Anal-
ysis (CCA) problem [19,20,41]. As discussed before, HA
seeks a shared neural representation across subjects. The
performance of MVP analysis by using functional align-
ment is significantly increased [19,20]. Xu et al. proposed
the Regularized Hyperalignment (RHA), which uses an EM
algorithm to find the optimum template parameters itera-
tively [39]. Lorbert et al. developed Kernel Hyperalignment
(KHA) as a nonlinear extension of HA method [26]. Chen
et al. introduced a two-phase method for functional align-
ment, which is called Singular Value Decomposition Hyper-
alignment (SVDHA). The neural activities are mapped in
SVDHA to a low-dimensional space by using SVD, and then
the mapped features are aligned by using HA techniques [6].
Yousefnezhad et al. introduced Local Discriminant Hyper-
alignment (LDHA) as the first supervised HA method for
MVP analysis [41].

MVP techniques utilize classification algorithms for pre-
dicting a new subject’s neural activities. Cox et al. used both
linear and nonlinear SVM algorithms for the human brain
decoding [10]. Norman et al. illustrated SVM superior per-
formance to Gaussian Naive Bayes classifiers [30]. Carroll
et al. developed a new cognitive model by employing the
Elastic Net [44] to predict and interpret the distributed neu-
ral responses with sparse models [4]. Mohr et al. analyzed
different classification techniques, i.e., the first norm reg-
ularized SVM [2], the second norm regularized SVM [9],
the Elastic Net [44], and the Graph Net [15], to predict dis-
tinctive neural activities in the human brain [29]. They fig-
ured out the first norm regularized SVM can rapidly improve
the classification performance in fMRI analysis [29,42]. Os-
her et al. developed a network-based method by employing
the human brain’s anatomical features in order to classify
distinctive neural responses [31]. Yousefnezhad et al. pro-
posed two new ensemble learning approaches by utilizing
weighted AdaBoost [40], and Bagging [42].

Recent studies demonstrated that most of the generated
models by the standard pipeline cannot provide stable per-
formances on new fMRI datasets [1,7,14,32]. Some stud-
ies illustrated that results of General Linear Models (GLM)
that are generated by different software packages (AFNI
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[11], FSL [21], and SPM [33]) on a specific problem can be
highly unstable [32]. Since these linear models are utilized
in most of fMRI analysis (i.e., MVP classification), unstable
models rapidly decrease robustness of the final results [1,
3,32]. Eklund et al. proved that the cognitive models gen-
erated by rest-mode fMRI datasets for spatial extent could
significantly increase inflated false-positive rates [14]. Chen
et al. developed Convolutional Autoencoder (CAE) method
for improving the stability of functional alignment to ana-
lyze the whole brain neural activities [7]. Indeed, CAE em-
ployed Shared Response Model (SRM) [5] for functional
alignment as well as the standard searchlight analysis [17]
for improving the stability of the generated cognitive model
[5].

There are a few studies that used multi-objective opti-
mization [4,22,23]. Indeed, these approaches formulate dif-
ferent steps belonging to fMRI analysis by using multiple
objective functions rather than using single objectives for
each section. Then, these methods seek optimal solutions
for all of the objective functions simultaneously. Here, we
may seek multiple optimal solutions for a specific problem,
where they must be ranked in order to find the best final re-
sult. There are two approaches for ranking better solutions
that must work in unison, i.e., non-dominated sorting [12]
and multi-indicator algorithm [24]. While non-dominated
sorting seeks all possible solutions, indicators rank the ro-
bust solutions in each Pareto frontier as the final results. In
fMRI studies, Kao proposed a multi-objective approach for
estimating a general linear model between the design ma-
trix and the neural activities [22]. Conroy et al. develop a
multi-objective optimization for selecting models in fMRI
analysis, where they provided a principled method to take
into account both classification accuracy and stability [8]. In
another study, Kao et al. utilized a modified version of Non-
dominated Sorting Genetic Algorithm (NSGA-II) for gener-
ating the linear model between the fMRI responses and task-
related events [23]. Ma et al. developed a multi-objective
MVP technique by using Hierarchical Heterogeneous Parti-
cle Swarm Optimization (HHPSO), where the classification
problem is formulated as a binary SVM, and then HHPSO
seeks optimal solutions [27].

3 The Proposed Method

As preprocessed fMRI dataset, F(i) ∈RT×Vorg , i = 1:S is de-
fined, where S denotes the number of subjects, Vorg is the
number of voxels in the original space, T denotes the num-
ber of time points in units of Time of Repetitions (TRs). This
paper assumes that the neural activities of each subject are
column-wise standardized, i.e., F(i) ∼ N(0,1). We can also
consider this condition as a preprocessing step if the original
data is not standardized. A linear model then can be formu-
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Fig. 1 An example of functional alignment in a two-voxel represen-
tation space. Here, the neural activities are depicted by vectors with
different colors, and each color (i.e., blue, green, and red) represents a
specific category of visual stimuli. Further, R(`) denotes the mapping
from the original features to the shared space [20,26,39,41].

lated for each subject as follows:

F(i) = D(i)
β
(i)+ ε

(i), i = 1:S (1)

where D(i) ∈ RT×C denotes the design matrix, ε(i) is the er-
ror of estimation, β (i) ∈ RC×Vorg is the sets of regressors.
In addition, C denotes the number of stimulus categories in
the experiment [40,42]. Design matrix can be generated by
convolution of time samples (or onsets: τ(i) ∈ RT×C) and
the Hemodynamic Response Function (HRF) signal (H ),
i.e., D(i) = τ(i) ∗H [42]. Here, time synchronized stimulus
ensures temporal alignment, including the m-th time point
for all of the subjects represents the same simulation [26,
39,41]. In order to estimate β (i), the first objective function
is defined for tracking error (ε(i)) in (1) as follows:

θ1 =
1
S

S

∑
i=1

F(i)−D(i)
β
(i) (2)

By considering (2), the stimuli in the training-set are con-
sidered time synchronized, i.e., each time point for all sub-
jects illustrates the same simulation [26,39]. Consequently,
the class labels for the training-set are defined by Y ={

ym

}
, ym ∈ {−1,+1}, m = 1:T . In order to generalize the

proposed method, a mapping function can be defined as fol-
lows:

X(`) ∈ RT×V = Φ

(
D(`)

β
(`)
)

(3)
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where Φ :RT×Vorg→RT×V can be considered for two differ-
ent applications. It can be any kernel function [26] that maps
the voxels from original nonlinear space to a linear embed-
ded space. Further, this function can be any feature selec-
tion/ranking function [5,6,16]. In order to employ the origi-
nal data, this function can be considered as a linear mapping,
where Φ(x) = x. We will analyze different applications of
this function in the experiments section.

The next step is functional alignment. As mentioned be-
fore, the general assumption in the brain decoding is that
the generated patterns in each brain are noisy ‘rotation’
of a shared space [19,41,5,26]. Figure 1 illustrates an ex-
ample for functional alignment in a two-voxel representa-
tion space. As depicted in this figure, Hyperalignment (HA)
seeks a shared space by using the training-set, where the cor-
relations between different stimuli are minimized. By con-
sidering (2), functional alignment can be defined as follows
[41]:

θ2 =
1
S

S

∑
i=1

j=i+1

∥∥X(i)R(i)−X( j)R( j)∥∥2
F

s.t.
(
X(`)R(`)

)>X(`)R(`) = I, `= 1:S

(4)

where I is the identity matrix, and R(`) ∈ RV×V denotes
the mapping that must be calculated for each subject. Here,
voxel correlation map (X(i))>X( j), i, j = 1:S in the most of
fMRI studies is not full rank because the number of voxels
is significantly more than TRs [6,26,39,41]. Since (4) must
be calculated for any new subject in the testing-phase, it is
not computationally efficient.

Lemma 3.1 The equation (4) is equivalent to:

θ2 =
1
S

S

∑
i=1

∥∥G−X(i)R(i)∥∥2
F

s.t.
(
X(`)R(`)

)>X(`)R(`) = I, `= 1:S

(5)

where G ∈ RT×V is the HA shared space:

G =
1
S

S

∑
j=1

X( j)R( j) (6)

Proof. In a nutshell, both (4) and (5) can be reformulated as

S2tr
(
GᵀG

)
−
(

S∑
S
i=1 tr

((
X(i)R(i)

)ᵀX(i)R(i)
))

, where tr()

denotes the trace function. Please see [41,26] for details.

G is called the HA shared space, which can be used for
functional alignment in the testing-phase [41,39,20,6].

Remark 3.1 The angle of rotation for all stimuli in each sub-
ject after mapping must be equal. This paper defines Intra-
Subject Evaluation (ISE) as follows for calculating the angle
of rotation for each category of stimuli:

ISE(x,g) =
x>g
‖x‖‖g‖

(7)

where the vectors x ∈ RV and g ∈ RV respectively denote
the neural activities in a specific time point before and after
mapping.

By considering (7), the error of rotation for all subject is
calculated as follows:

θ3 =
1
S

S

∑
`=1

C

∑
m=1

n=m+1

∥∥∥ISE
(
x(`)m. ,g

(`)
m.

)
− ISE

(
x(`)n. ,g

(`)
n.
)∥∥∥2

F (8)

where row vector x(`)m. ∈RV denotes the neural activities (all
voxels) belong to m-th time point, i.e., x(`)m. = {x(`)mn|x(`)mn ∈
X(`),n = 1 : V}. Further, we have the same notation for the
shared space, g(`)m. ∈ RV = {g(`)mn|g(`)mn ∈G(`),n = 1 : V}.

Remark 3.2 As mentioned before, classification algorithms
are employed in MVP analysis for generating the cognitive
model. While we can use any algorithm for training a cogni-
tive model, this paper employs L1 regularized SVM [2] that
is utilized in [29] as the best algorithm for fMRI analysis.

As the next step, a classification model is defined as follows:

θ4 =
α

S

S

∑
i=1

max
(

0,1T −
(

diag(Y)X(i)R(i)W
))2

+‖W‖1

(9)

where the constraint α > 0 is the SVM parameter, diag func-
tion create a square diagonal matrix from the class label vec-
tor Y, 1T ∈ RT is ones vector, ‖.‖ denotes the L1 norm,
W ∈ RT is the decision surfaces for our cognitive model.

Training-phase for MOCM can be denoted by using fol-
lowing objective function:

min
ptrain

Θtrain

s.t. Θtrain = Ktrain
(
F,τ;ptrain

) (10)

where the vector Θtrain =
[
θ1,θ2,θ3,θ4

]
is the training er-

ror, the fMRI time series F = {F(i), i = 1:S} and its cor-
responding onsets τ = {τ(i), i = 1:S} are considered as the
training-set, and the training parameters are defined by the
vector ptrain =

[
β (`),R(`),W

]
, ` = 1:S. Here, Ktrain respec-

tively employs (2), (4), (8), (9) in order to estimate θ1,θ2,θ3,

and θ4. In testing-phase, the following objective function is
used:

min
ptest

Θtest

s.t. Θtest = Ktest
(
F̂, τ̂,G;ptest

) (11)

where the vector Θtest =
[
θ1,θ2,θ3

]
is the error of testing-

phase, the fMRI time series F̂ = {F̂(i), i = 1:Ŝ} and its cor-
responding onsets τ̂(i) = {τ̂(i), i = 1:Ŝ} denote the testing-
set, Ŝ is the number of subjects in the testing-set, G de-
notes the shared space that is calculated in the training-
phase, and the testing parameters are defined by the vector
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Algorithm 1 Multi-Objective Cognitive Model (MOCM)
Input: K(p) for training-phase or testing-phase,
O as population size, MaxIt as maximum iterations, MaxSame as
maximum iterations with the same optimal result.
Output: An optimal solution popt .
Method:
01. Random initial P(0) as a set of the 1st O solutions.
02. i = 0, j = 0.
03. While (i < MaxIt) and ( j < MaxSame) Do
04. Q(i) = /0.
05. Repeat O-times Do
06. Randomly choose p1,p2 ∈ P(i).
07. Create offspring q = (p1 +p2)/2.
08. Update Q(i) = Q(i)∪{q}.
09. End Repeat
10. Random initial E(i) with size O.
11. Generate new population: U(i) = P(i)∩Q(i)∩E(i).
12. P(i+1) = SORT

(
K(p), U(i), O

)
.

13. p(i)
opt as the first sorted solution in P(i+1).

14. If
(
K(p(i)

opt) == K(p(i−1)
opt )

)
15. j = j+1.
16. Else
17. j = 0.
18. End If
19. i = i+1.
20. End While
21. Return p(i)

opt .

ptest =
[
β̂ (`), R̂(`)

]
,

` = 1:S. Here, Ktest respectively uses (2), (5), (8) for esti-
mating θ1,θ2, and θ3. Furthermore, the final prediction can
be generated by Ŷ(i) ∈ RT = 1T −

(
X̂(i)R̂(i)W

)
for all new

subjects (i = 1:Ŝ), where W denotes the decision surfaces
that is calculated in the training-phase.

3.1 Optimization

In the previous section, we introduced an integrated multi-
objective function in order to apply supervised fMRI analy-
sis. This section presents a customized multi-objective opti-
mization approach for finding optimal solutions for both the
training-phase and testing-phase. For simplicity, a general-
ized objective function is considered as follows:

Θ ← K(p) (12)

where the function K and parameters p can be calculated
by (10) for training-phase, and (11) is used for the testing-
phase. Algorithm 1 depicts a general template as the opti-
mization approach for MOCM. In this algorithm, O is the
population size, MaxIt denotes the maximum number of it-
erations, and MaxSame is the maximum number of itera-
tions with the same optimal solution. This algorithm firstly
considers a set of O random solutions (P(0)) for the first it-
eration. Further, we create three different sets of solutions
(with size O) in each iteration in order to generate a new

Algorithm 2 The SORT function
Input: Objective function K(p), A set of solutions U,

Population size O
Output: Popt as the first O optimal solutions.
Method:
01. For Each p ∈ U
02. ∆p = /0, np = 0.
03. For Each (q ∈ U) and (q 6= p)
04. Θp← K(p), Θq← K(q)
05. If (Θp ≺Θq)
06. ∆p = ∆p∪{q}.
07. Elsif

(
Θq ≺Θp

)
08. np = np +1.
09. End If
10. End For
11. If np = 0 Then
12. Ω (1) = Ω (1)∪{p}.
13. End If
14. End For
15. j = 1, Popt = /0.
16. While (Ω ( j) 6= /0) and (|Popt |< O)

17. Ω ( j+1) = /0.
18. I1-evaluation: ap = I1

(
p,Ω ( j)

)
for all p ∈Ω ( j).

19. I2-evaluation: bp = I2
(
p,Ω ( j)

)
for all p ∈Ω ( j).

20. Order Ω ( j) (solutions with lowest max(ap, bp) in top).
21. For Each (p ∈Ω ( j))
22. Popt = Popt ∪{p}.
23. For Each (q ∈ ∆p)
24. nq = nq−1.
25. If (nq = 0)
26. Ω ( j+1) = Ω ( j+1)∪{q}.
27. End If
28. End For
29. End For
30. j = j+1.
31. End While

population for the next iteration. As the first set, P(i) is the
best O solutions that are generated in the previous step. As
the second set, we create O new offsprings by averaging
randomly selected parents from P(i). Indeed, this set tries
to seek better solutions by combining the previous best so-
lutions. As the last set, we create O new random solutions
(E(i)) in order to increase the diversity of possible solutions.
In fact, E(i) can rapidly reduce the chance of the local op-
timum issue. These sets are combined as a new population
(U(i)) with size 3O, and then the SORT() function select the
first O optimal solutions for the next step. Further, the first
sorted solution (p(i)

opt ) from P(i+1) is considered as the best
solution for i-th iteration. As the finishing condition, the al-
gorithm repeats MaxIt-times the optimization procedure un-
less the best solutions for MaxSame-times will be the same.

The key point in Algorithm 1 is the SORT() function.
Algorithm 2 illustrates this function. As mentioned before,
the optimization approach for MOCM is developed by in-
corporating the idea of non-dominated sorting [12] into the
multi-indicator algorithm [24]. As the first step, the solu-
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tions in U are ranked based on the concept of domination.

Remark 3.3 The best solution (popt ) must dominate (≺)
[12,24] all possible solutions in U. In other words, the es-
timation of the optimal result (Θopt ← K(popt)) must satisfy
the following conditions in comparison with all possible es-
timations (Θq← K(q) for all q ∈ U):

∀θ ( j)
opt ∈Θopt , θ

(`)
q ∈Θq =⇒ θ

( j)
opt ≤ θ

(`)
q

∃θ ( j)
opt ∈Θopt , θ

(`)
q ∈Θq =⇒ θ

( j)
opt < θ

(`)
q

(13)

In order to apply non-dominated sorting, Algorithm 2
firstly generates two criteria for ranking all possible solu-
tions (U), i.e., the scale np and the matrix ∆p for each solu-
tion. The scale np counts the number of solutions that can
dominate the solution p, and the matrix ∆p denotes the set
of solutions that are dominated by the solution p. Further,
the set of the first Front (Ω (1)) can be defined by the solu-
tions that are not dominated by any solution (∀p∈Ω (1) =⇒
np = 0).

As the second step, Algorithm 2 must create O optimal
sorted solutions. As mentioned before, this paper uses the
multi-indicator algorithm for evaluating error rates in the
possible results. Indeed, these indicators can evaluate the ro-
bustness of the generated results. This paper employs two
effective indicators, i.e., I1 [24,43] and I2 [24]. As the first
indicator, I1 is defined as follows [24,43]:

I1(q,P) = ∑
p∈P
p6=q

exp(
−1
0.05

Iε+(q,p)) (14)

where Iε+(p,q) is denoted as follows [43]:

Iε+(p,q) = min
ε

(
θ`− ε ≤ θ̂`

)
,

∀θ`∈Θp←K(p)
∀θ̂`∈Θq←K(q) (15)

Further, indicator I2 is defined as follows [24]:

I2(q,P) = min
p∈P

p precedes q

(
ISDE(q,p)

)
(16)

where p precedes q means that the position (the original in-
dex) of p in the population P is smaller than the position q
[24]. In addition, ISDE is calculated as follows [25]:

ISDE(p,q) =
(
∑
`

sd
(
θ`, θ̂`

)2
) 1

2
,

∀θ`∈Θp←K(p)
∀θ̂`∈Θq←K(q) (17)

sd(θ , θ̂) =

{
θ − θ̂ if θ < θ̂

0 otherwise.
(18)

In order to select the O optimal solutions, the set of j-th
Front solutions (Ω ( j)) will be evaluated by I1 and I2. Then,
the elements of Ω ( j) will be ordered based on the evalua-
tions, where the elements with lowest maximum error rates
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Fig. 2 An example of selecting optimal solution by using MOCM.

(max(ap, bp)) are considered as the better solutions. Further,
nq for the solutions that are dominated by each of optimal
solutions will be reduced, and if nq = 0 then those solutions
will be added to the set of Front solutions for the next step
(Ω ( j+1)). This procedure will be continued in order to select
the O optimal solutions from U.

Figure 2 shows an example of MOCM solution, where
two objective functions generate three different solutions
(i.e., A, B, and C). The solutions A and B can dominate the
solution C, including both θ1(C) and θ2(C) are greater than
other solutions. However, we cannot select A or B based
on non-dominated sorting because of θ1(A) < θ1(B) and
θ2(A) > θ2(B). Therefore, the indicators I1 and I2 are em-
ployed to evaluate the solutions A and B. Here, A is selected
as the optimal solution, where the maximum of indicator
values (max(I1A,I2A) = 0.8) in solution A is lower than B
(max(I1B,I2B) = 0.9).

4 Experiments

4.1 Datasets

This paper utilizes 6 datasets, mostly shared by Open
fMRI1, for running empirical studies in this paper. These
datasets are listed as follows:

– DS005 includes 2 categories of risk tasks with the 50/50
chance of selection. In addition, Regions of Interest
(ROI) is defined based on the original paper [35].

1 Available at http://openfmri.org
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Table 1 fMRI datasets

ID Title X Y Z # R L T V TR TE Scanner
DS005 Mixed-gambles task 53 63 52 16 48 2 240 450 2 30 Siemens 3 Tesla
DS105 Visual Object Recognition 79 95 79 6 71 8 121 1963 2.5 30 GE 3 Tesla
DS107 Word & Object Recognition 53 63 52 49 98 4 164 932 2 28 Siemens 3 Tesla
DS116 Auditory and Visual Oddball 53 63 40 17 102 2 170 2532 2 25 Philips 3 Tesla
DS117 Multi-subject, multi-modal 64 61 33 19 171 2 210 524 2 30 Siemens 3 Tesla
CMU Meanings of Nouns 51 61 23 9 9 12 360 17326 1 30 Siemens 3 Tesla

X, Y, Z as the size of 3D images; # = S+ Ŝ denotes the number of subjects; R is the number of all runs (sessions); L denotes the number of stimulus
categories; T is the number of time points; V denotes the number of voxels in ROI; TR is Time of Repetition in second; TE denotes Echo Time in
millisecond.

– DS105 includes 8 categories of visual stimuli, i.e., gray-
scale photos of cats, faces, houses, shoes, bottles, scis-
sors, chairs, and scrambles (nonsense patterns). The neu-
ral activities in Ventral Temporal (VT) cortex is consid-
ered as the ROI in this dataset. Please refer to [20,19]
for technical information.

– DS107 contains 4 categories of visual stimuli, i.e., con-
sonants, scrambles, objects, and words. The ROI is also
defined based on the original study [13].

– DS117 includes MEG and fMRI images, where this pa-
per just utilizes the fMRI data for running the empiri-
cal studies. Further, this dataset contains 2 categories of
visual stimuli, i.e., human faces, and scrambles. In this
dataset, the voxel responses in the VT cortex are consid-
ered as the ROI. Please see [36] for more information.

– DS116 contains EEG signals and fMRI images. We just
use the fMRI data in order to generate the experiments.
This data includes 2 categories of audio and visual stim-
uli, including oddball tasks. Also, ROI is selected based
on the original paper [37].

– CMU includes 12 semantic categories of word photos as
the visual stimuli. Here, the ROI is defined based on the
intersection of coordinates across subjects. Please refer
to [28] for more information.

Table 1 summarizes the technical information of these
datasets. Further, this paper separately preprocessed all
datasets by using FSL 5.0.92, i.e., slice timing, anatomical
alignment, normalization, smoothing. Here, we have utilized
the standard HRF signal generated by FSL in order to con-
volve the task events.

4.2 Performance Analysis

This section compares the performance of the proposed
method with different MVP techniques. As a baseline, this
paper reports the performance of L1 SVM [2], which is used
in [29] as the best algorithm for MVP analysis. Further, the
performance of the original HA [17,20] and KHA [26] are

2 Available at https://fsl.fmrib.ox.ac.uk

addressed for demonstrating the effect of functional align-
ment in MVP analysis. Here, KHA algorithm is applied by
using the Gaussian kernel that introduced as the best ker-
nel in the original paper [26]. Further, we utilized 1/n as the
gamma parameter for all employed Gaussian kernels in this
paper, where n is the number of features [26,42]. As a new
graph-based method, the performance of Osher et al. method
[31] is also reported in this paper. As a baseline for single-
objective swarm optimization techniques in MVP analysis,
the performance of PSO-SVM [27] is addressed in this pa-
per. Moreover, the performance of HHPSO-SVM [27] and
Kao et al. method [23] are reported as two multi-objective-
based methods in MVP analysis. Finally, the performance
of the MOCM method is addressed by using two different
mapping functions, i.e., a linear mapping (Φ(x) = x), and
Gaussian kernel same as KHA method. In addition, there is
no feature selection in this section. Like [27], the popula-
tion size is considered O = 50 for PSO, HHPSO, NSGA-II
(in Kao et al. method), and MOCM. Moreover, we consider
MaxIt = 1000 and MaxSame = 5 for all datasets. Like the
previous studies [26,29,40,41,42], this paper firstly parti-
tions the original fMRI images to training-set and testing-set
by using leave-one-subject-out cross-validation. Then, the
general linear model is calculated in the subject-level for all
methods. After that, the functional alignment parameters are
calculated for hyperalignment techniques. Next, this paper
generates binary classifiers by applying one-versus-all strat-
egy to the neural activities in the training sets. Finally, the
performances of trained classifiers are evaluated by applying
unseen testing sets and calculating the average of accuracy
(or AUC) [40,42]. It is worth noting that the same structure
and sample sets are applied to all evaluated methods in each
iteration. Furthermore, the mentioned algorithms are imple-
mented in the MATLAB R2016b (9.1) on a PC with certain
specifications3 by authors for generating the empirical stud-
ies.

Table 2 and 3 respectively illustrate the classification
Accuracy and Area Under the ROC Curve (AUC) in per-
centage (%). As depicted in these tables, L1 SVM cannot

3 DEL, CPU = Intel Xeon E5-2630 v3 (8×2.4 GHz), RAM = 64GB,
OS = Ubuntu 16.04.2 LTS
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Table 2 Accuracy of Classification Methods (mean±std)

↓Algorithms, Datasets→ DS005 DS105 DS107 DS116 DS117 CMU
L1 SVM [29,2] 71.65±4.97 85.29±3.49 81.25±3.62 69.24±3.28 76.61±2.73 73.62±3.15
L1 SVM + HA [20,17] 81.27±3.59 87.03±2.87 84.01±1.56 74.62±1.84 77.93±2.29 80.23±1.63
L1 SVM + KHA [26] 83.06±2.36 90.05±2.39 86.68±1.71 80.51±2.12 84.22±1.44 83.49±2.03
Osher et al. [31] 84.55±2.02 90.82±1.87 85.62±1.95 78.91±2.04 86.81±1.79 85.01±1.97
PSO-SVM [27] 70.32±1.92 77.91±1.03 81.21±2.33 76.14±1.49 83.71±2.81 82.61±1.05
HHPSO-SVM [27] 90.17±1.01 94.46±1.23 89.91±1.67 96.03±0.56 96.74±1.01 87.62±1.03
Kao et al. [23] 89.68±0.87 95.31±0.44 87.77±0.28 84.16±0.73 90.49±0.39 90.93±1.82
MOMVP (Linear kernel) 94.79±0.57 93.61±0.57 92.83±0.57 90.93±0.71 91.90±0.27 94.37±0.98
MOMVP (Gaussian kernel) 96.10±0.29 98.34±0.29 96.79±0.59 97.09±0.33 95.49±0.18 96.02±0.92

Table 3 Area Under the ROC Curve (AUC) of Classification Methods (mean±std)

↓Algorithms, Datasets→ DS005 DS105 DS107 DS116 DS117 CMU
L1 SVM [29,2] 68.37±4.01 80.91±3.21 80.72±2.88 66.85±3.05 72.12±1.48 70.08±2.94
L1 SVM + HA [20,17] 70.32±2.92 84.82±2.53 82.94±1.03 73.91±1.33 75.14±2.49 78.32±1.21
L1 SVM + KHA [26] 82.22±2.42 88.81±1.61 83.36±2.12 77.41±1.97 81.54±1.92 81.76±2.92
Osher et al. [31] 81.83±2.86 89.54±1.74 82.02±2.43 75.08±1.12 84.08±1.84 82.27±2.06
PSO-SVM [27] 67.84±2.82 75.61±1.57 80.14±2.47 73.59±1.95 79.05±2.12 79.88±3.73
HHPSO-SVM [27] 87.91±1.83 92.39±1.73 86.12±0.99 95.32±1.18 90.73±1.59 87.01±1.61
Kao et al. [23] 88.13±1.58 90.45±0.73 84.67±1.04 83.28±1.47 89.69±1.27 89.00±1.02
MOMVP (Linear kernel) 91.17±0.80 92.36±0.84 91.63±0.69 90.16±0.72 90.15±0.69 92.66±0.73
MOMVP (Gaussian kernel) 94.37±0.63 97.71±0.58 93.22±0.49 94.97±0.14 93.72±0.31 95.79±0.42

provide acceptable performance in comparison with other
techniques because it just uses the anatomical alignment.
Further, functional alignment techniques (HA and KHA)
improved the performance of MVP analysis in comparison
with L1 SVM method. In addition, HHPSO-SVM generated
better results in comparison with PSO-SVM because it uses
a multi-objective optimization approach. Moreover, the per-
formance of Kao et al. method is significantly unstable be-
cause the optimization approach (NSGA-II) in this method
cannot trace errors very well. Indeed, this is the main rea-
son that we extend the indicators algorithm for improving
the robustness of non-dominated sorting. Here, the perfor-
mances of multi-objective approaches are more stable than
the singular-objective methods (based on the standard de-
viation). Finally, the proposed method has generated better
performance in comparison with other methods because it
provided a robust and stable solution for MVP analysis by
developing an integrated objective function and providing an
effective optimization strategy. Indeed, the proposed method
provides better performance when it is applied by using the
Gaussian kernel that can map the nonlinear data points to a
linear space. Furthermore, MOCM can calibrate the param-
eters generated in each step of fMRI analysis by tracing the
errors in other steps. A good example is functional align-
ment techniques that can generate different solutions for a
specific problem [5]. While a single objective function gen-
erates these solutions, there is no way to rank or select one
of them. However, MOCM can rank all possible solutions
in each step of fMRI analysis (i.e., function aligning, classi-
fication, etc.) by tracing the effects of that solution on the
other steps. Here, if we have two different alignment so-
lutions for a specific problem, MOCM selects the solution

with lowest classification error as the optimal solution. It is
worth noting that we always select a set of optimal solutions
in each iteration that has potential to generate better solu-
tions in the next step (by creating new offsprings).

4.3 MVP analysis by using feature selection

This section analyzes the performance of MVP methods by
using the features selection techniques. MOCM is compared
with SVDHA [6], SRM [5], and CAE [7] as the state-of-
the-art MVP methods that can apply feature selection be-
fore generating a cognitive model. Here, L1 SVM is used for
generating the cognitive models after each of the mentioned
methods are applied on the preprocessed fMRI images for
functional alignment. Like SVDHA, the proposed method
employs a feature section function in terms of SVD analy-
sis, where the mapping function Φ : Vorg → V,Vorg � V is
defined in order to generate the cognitive model [6]. In other
words, SVD decomposition is applied to the neural activi-
ties and then features are sorted based on the largest singu-
lar values. After that, we have selected the V features, where
they have the largest V singular values in the decomposition.
Next, the selected features are used in SVDHA and MOCM
for training the classification model. For CAE method, the
features are selected by reducing the number of units in the
convolution neural network. In addition, we have selected
features in SRM by changing the parameter k in this method,
where k is the size of features for generating the mappings
(Wi) and the shared space (S) in SRM method [5]. It is worth
noting that the feature selection procedure is applied sepa-
rately to the training set and the testing set after these sets
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(A) DS005 (B) DS105

(C) DS107 (D) DS116

(E) DS117 (F) CMU

Fig. 3 MVP analysis by using feature selection.

are partitioned by using cross-validation. Further, the setup
of this experiment is same as the previous section (cross-
validation, the population size, etc.). Figure 3 shows the per-
formance of different methods by selecting 100% to 60%
of features. As shown in this figure, the proposed method
has generated better performance in comparison with other
methods. Indeed, it can track errors of learning during the
feature selection and then update different training coeffi-
cients (β (i), R(i), W) for minimizing the generated errors.

4.4 Runtime Analysis

This section analyzes runtime of different MVP methods.
As mentioned before, all of the empirical studies are gener-
ated by using a specified PC. Figure 4 compares the runtime
of MOCM with other functional alignment methods, where
all runtime are scaled based on the proposed method (the
runtime of MOCM is utilized as a unit). As this figure illus-
trates, there are four groups of methods based on the run-
time. As the first group, SVM [29,2] and PSO-SVM [27]
just employed a singular objective function and data without
functional alignment. Therefore, they produce low accuracy

(see previous sections) and runtime. As the second group,
HA [20], KHA [26], SVDHA [6], Osher et al. method [31],
SRM [5], and CAE [7] simultaneously utilized two singular
objective functions for functional alignment and classifica-
tion learning. Since HA, KHA, and SVDHA employed a sin-
gle objective function for generating the function alignment
parameters, i.e., the shared space (G) and mapping functions
(R(i)), the number of iteration for optimizing these parame-
ters is naturally lower than a multi-objective solution. Thus,
they are a little faster than MOCM. However, the perfor-
mance of these methods are limited, and the optimization
approaches in these methods cannot calibrate the alignment
parameters based on the generated errors in GLM step or
classification learning procedure. It is worth noting that the
runtime of CAE is high because it employs deep learning
method for aligning the neural activities. As the next group,
HHPSO [27] and Kao et al. [23] methods use the multi-
objective approaches but just for the learning step. Indeed,
these methods considered the functional alignment as the
preprocessing step. By contrast, the proposed method does
not need a separate step for functional alignment because it
utilizes an integrated solution in order to apply the whole of
procedures.

5 Discussions and Conclusions

As the final product of Multi-Objective Cognitive Model
(MOCM), Figure 5 depicts some examples of the generated
cognitive models across categories of stimuli. Indeed, we
visualized the decision surfaces (W) that are generated in
the training-phase. In order to create the cognitive model,
we applied MOCM with a linear mapping (Φ(x) = x) to
the whole-brain fMRI images with the following parame-
ters: O = 50,MaxIt = 1000,MaxSame = 10. This figure il-
lustrates that different loci are activated based on distinctive
stimuli. Further, the brain activities will be more focused in a
certain region, when the stimuli just include the specific ex-
emplars (such as human faces in DS117) rather than the ab-
stract categories (concepts), e.g. objects in DS107. Indeed,
this assumption is matched by the results of the previous
studies [20,29,28,40,42], and can be considered as a shred
of evidence for validating the generated model. It is worth
noting that the proposed method can used for understanding
how the human brain works and seeking new treatments for
mental diseases.

There are several advantages to using multi-objective ap-
proach. Firstly, it can simplify the procedure of analysis.
While other approaches need different steps with distinctive
parameters (that may conflict with each other), we only need
to apply a single step in the MOCM method for generating
every thing, i.e., beta values, aligned features, and the clas-
sification model. The second advantage is tracing errors in
different steps. Since we optimize a vector (i.e., the cost of



10 Muhammad Yousefnezhad, Daoqiang Zhang
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Fig. 4 Runtime Analysis

DS105: Scramble Stimulus

DS107: Object Stimulus

DS117: Face Stimulus
Min Max

0 1

Fig. 5 Examples of cognitive models (decision surfaces), generated for
each category of stimuli by applying MOCM to whole-brain datasets

different objective functions) at the same time rather than the
disjoint single objective functions, we can rank and select
possible solutions based on their generated errors in differ-
ent steps. Since the set of optimal solutions (new offsprings)
in each iteration are generated by using the ranked solutions
of the previous iteration, they have potential to improve the
quality of the final results in all steps simultaneously, includ-
ing beta values, aligned features, classification models, etc.

In summary, this paper proposes MOCM as an inte-
grated objective function in order to improve the perfor-
mance and stability in the supervised fMRI analysis. By
contrast of the previous methods, this objective function
can apply both the functional alignment step and the learn-
ing step at the same time. Further, this objective function
is generalized by using the kernel approach (for nonlin-
ear data) and feature selection technique (for reducing the
sparsity and noise). In order to solve the integrated ob-

jective function, a customized multi-objective optimization
approach is developed by incorporating the idea of non-
dominated sorting into the multi-indicator algorithm. In-
deed, non-dominated sorting seeks all possible solutions,
and then indicators rank the robust solutions as the final
results. Empirical studies on multi-subject fMRI datasets
confirm that the proposed method achieves superior perfor-
mance to other state-of-the-art MVP techniques. In the fu-
ture, we will plan to utilize the proposed method for improv-
ing the performance of other techniques in fMRI analysis,
i.e unsupervised learning in RSA methods, multi-modality
analysis, and neural hub detection.
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