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The Mind Reader (in theory)

Smith, Nature, 2013
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Optogenetics
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Recovery Movies from Human Brain

Nishimoto, Current Biology, 2011
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Semantic Maps

Huth, Nature, 2016
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functional Imaging: functional MRI (fMRI)
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fMRI vs. Other Modalities

Prior to the discovery that within-area patterns of response in fMRI
carried information that afforded decoding of stimulus distinctions.

It was generally believed that the spatial resolution of fMRI allowed
investigators to ask only which task or stimulus activated a region
globally.

Instead of asking what a regions function is, in terms of a single brain
state associated with global activity, fMRI investigators can now ask
what information is represented in a region, in terms of brain
states associated with distinct patterns of activity, and how that
information is encoded and organized.

A wide range of open source fMRI datasets.
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The Human Brain Decoding: Problem Definition

Smith, Nature, 2013
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Representational Space: Example

Haxby, Annual Review Neuroscience, 2014
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Hyperalignment
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The main assumption in Hyperalignment is that the neural actives in different
brains are noisy ‘rotations’ of a common space Haxby, Neuron, 2011.

It can be formulated as extracting shared space from multi-view (multi-subject)
data.
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Classical Hyperalignment

Classical Hyperalignment can be formulated by Generalized Canonical Cor-
relation Analysis (CCA): Haxby, Neuron, 2011

min
R(i),G

S∑

i=1

∥∥∥X(i)R(i) − G
∥∥∥

2

F

subject to
(

X(`)R(`)
)>

X(`)R(`) = I

where the common space can be denoted by:

G ∈ RT×V =
1

S

S∑

j=1

X(j)R(j),

X(`) ∈ RT×V denotes the neural activities, and R(`) ∈ RV×V is the mappings.
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Regularized Hyperalignment

RHA’s Objective Function can be denoted as follows:

min
R(i),G

S∑

i=1

∥∥∥X(i)R(i) − G
∥∥∥

2

F

subject to
(

R(`)
)>((

X(`)
)>

X(`) + εI

)
R(`) = I

The common space: G = 1
S

∑S
j=1 X(j)R(j)

Here, the regularization term ε can improve the stability of alignment
by providing a better inverse of the covariance matrix for X(i).

Xu, IEEE SSP, 2012

Muhammad (Tony) Yousefnezhad (NUAA) Analyzing Human Brain Patterns MLOC 2018 14 / 41



Kernelized Hyperalignment

KHA’s Objective Function can be denoted as follows:

min
R(i),G

S∑

i=1

∥∥∥Φ(X(i))R(i) − G
∥∥∥

2

F

subject to
(

Φ(X(`))R(`)
)>

Φ(X(`))R(`) = I

The common space: G = 1
S

∑S
j=1 Φ(X(j))R(j)

Here, Φ(.) is a standard kernel function that can handle nonlinear
datasets.

However, classical kernel functions are limited by a restricted fixed
representational space.

Lorbert, NIPS, 2012
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Challenges

There are some long standing challenges for calculating accurate functional
alignments:

High Dimensionality

Sparsity

Nonlinear Features

Large Number of Subjects
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Kernel Function

Ф(X)
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Deep Kernel Function

Ф(X)
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Deep Hyperalignment (DHA)
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Deep Hyperalignment: Objective Function

DHA’s Objective Function can be denoted as follows:

min
G,R(i),θ(i)

S∑

i=1

∥∥∥G− fi
(
X(i);θ(i)

)
R(i)

∥∥∥
2

F

subject to
(

R(`)
)>((

f`
(
X(`);θ(`)

))>
f`
(
X(`);θ(`)

)
+ εI

)
R(`) = I

The common space: G = 1
S

∑S
j=1 fj

(
X(j);θ(j)

)
R(j)

Here, f` is the deep neural network such as:

f`
(
X(`);θ(`)

)
= mat

(
h

(`)
C ,T ,Vnew

)
,

h
(`)
m = g

(
W

(`)
m h

(`)
m−1 + b

(`)
m

)

where h
(`)
1 = vec

(
X(`)

)
and m = 2:C .
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Deep Hyperalignment: Objective Function

Firstly, we employ the rank-m SVD as follows:

f`
(
X(`);θ(`)) SVD

= Ω(`)Σ(`)(Ψ(`))>, ` = 1:S

Then, projection matrix can be calculated as follows:

P(`) = f`
(
X(`);θ(`))

((
f`
(
X(`);θ(`)))>f`

(
X(`);θ(`))+ εI

)−1(
f`
(
X(`);θ(`)))>

= Ω(`)(Σ(`))>(Σ(`)(Σ(`))> + εI
)−1

Σ(`)(Ω(`))> = Ω(`)D(`)
(

Ω(`)D(`)
)>

Here, we have a diagonal product D(`)
(
D(`)

)>
=

(
Σ(`)

)>(
Σ(`)

(
Σ(`)

)>
+ εI

)−1
Σ(`).

Thus, calculating the inverse of matrix is easy!

Yousefnezhad, NIPS, 2017
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Deep Hyperalignment: Optimization (Step 1)

Theorem

By considering fixed mapping functions R(i) and fixed network parameters θ(i), DHA’s
Objective Function can be reformulated as follows:

min
G,R(i),θ(i)

S∑

i=1

∥∥∥G− fi
(
X(i);θ(i))R(i)

∥∥∥ ≡ max
G

(
tr
(
G>AG

))

where the sum of projection matrices can be calculated as follows:

A =
S∑

i=1

P(i) = ÃÃ>, where Ã ∈ RT×mS =
[
Ω(1)D(1) . . .Ω(S)D(S)]

Theorem
By using Incremental SVD, the shared space G can be calculated as follows, where
Λ =

{
λ1 . . . λT

}
is the eigenvalues of A:

AG = GΛ =⇒ Ã = GΣ̃Ψ̃>
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Deep Hyperalignment: Optimization (Step 2)

Theorem

By considering fixed share space G and fixed network parameters θ(i), DHA’s
mapping functions can be calculated as follows:

R(`) =

((
f`
(
X(`);θ(`)

))>
f`
(
X(`);θ(`)

)
+ εI

)−1(
f`
(
X(`);θ(`)

))>
G
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Deep Hyperalignment: Optimization (Step 3)

Theorem

By considering fixed share space G and fixed mapping functions R(i), we
use back-propagation algorithm for seeking an optimized parameters for the
deep network as follows:

∂Z

∂f`
(
X(`);θ(`)

) = 2R(`)G> − 2R(`)
(
R(`)

)>(
f`
(
X(`);θ(`)

))>

where Z is the sum of the eigenvalues of A:

Z =
T∑

`=1

λ`
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Deep Hyperalignment: Algorithm

Algorithm 1 Deep Hyperalignment (DHA)

Input: Data X(i), i = 1:S, Regularized parameter ε, Number of layers C, Number of units U (m)

for m = 2:C, HA template Ĝ for testing phase (default ∅), Learning rate η (default 10−4 [13]).
Output: DHA mappings R(`) and parameters θ(`), HA template G just from training phase
Method:
01. Initialize iteration counter: m← 1 and θ(`) ∼ N (0, 1) for ` = 1:S.
02. Construct f`

(
X(`);θ(`)

)
based on (4) and (5) by using θ(`), C, U (m) for ` = 1:S.

03. IF (Ĝ = ∅) THEN % The first step of DHA: fixed θ(`) and calculating G and R(`) ↓
04. Generate Ã by using (8) and (10).
05. Calculate G by applying Incremental SVD [15] to Ã = GΣ̃Ψ̃>.
06. ELSE
07. G = Ĝ.
08. END IF
09. Calculate mappings R(`), ` = 1:S by using (12).

10. Estimate error of iteration γm =
∑S
i=1

∑S
j=i+1

∥∥∥fi
(
X(i);θ(i)

)
R(i) − fj

(
X(j);θ(j)

)
R(j)

∥∥∥
2

F
.

11. IF
(
(m > 3) and (γm ≥ γm−1 ≥ γm−2)

)
THEN % This is the finishing condition.

12. Return calculated G, R(`), θ(`)(` = 1:S) related to (m-2)-th iteration.
13. END IF % The second step of DHA: fixed G and R(`) and updating θ(`) ↓
14. ∇θ(`) ← backprop

(
∂Z/∂f`

(
X(`);θ(`)

)
, θ(`)

)
by using (13) for ` = 1:S.

15. Update θ(`) ← θ(`) − η∇θ(`) for ` = 1:S and then m← m+ 1
16. SAVE all DHA parameters related to this iteration and GO TO Line 02.

Algorithm 1 illustrates the DHA method for both training and testing phases. As depicted in this
algorithm, (12) is just needed as the first step in the testing phase because the DHA template G
is calculated for this phase based on the training samples (please see Lemma 1). As the second
step in the DHA method, the networks’ parameters (θ(`)) must be updated. This paper employs
the back-propagation algorithm (backprop() function) [14] as well as Lemma 3 for this step. In
addition, finishing condition is defined by tackling errors in last three iterations, i.e. the average of the
difference between each pair correlations of aligned functional activities across subjects (γm for last
three iterations). In other words, DHA will be finished if the error rates in the last three iterations are
going to be worst. Further, a structure (nonlinear function for componentwise, and numbers of layers
and units) for the deep network can be selected based on the optimum-state error (γopt) generated by
training samples across different structures (see Experiment Schemes in the supplementary materials).

In summary, this paper proposes DHA as a flexible deep kernel approach to improve the performance
of functional alignment in fMRI analysis. In order to seek an efficient functional alignment, DHA uses
a deep network (multiple stacked layers of nonlinear transformation) for mapping fMRI responses of
each subject to an embedded space (f` : RT×V → RT×Vnew , ` = 1:S). Unlike previous methods
that use a restricted fixed kernel function, mapping functions in DHA are flexible across subjects
because they employ multi-layer neural networks, which can implement any nonlinear function [12].
Therefore, DHA does not suffer from disadvantages of the previous kernel approach. In order to
deal with high-dimensionality (broad ROI), DHA can also apply an optional feature selection by
considering Vnew < V for constructing the deep networks. The performance of the optional feature
selection will be analyzed in Section 4. Finally, DHA can be scaled across a large number of subjects
by using the proposed optimization algorithm, i.e. rank-m SVD, regularization, and mini-batch SGD.

4 Experiments

The empirical studies are reported in this section. Like previous studies [1–7, 9], this paper employs
the ν-SVM algorithms [16] for generating the classification model. Indeed, we use the binary ν-SVM
for datasets with just two categories of stimuli and multi-label ν-SVM [3, 16] as the multi-class
approach. All datasets are separately preprocessed by FSL 5.0.9 (https://fsl.fmrib.ox.ac.uk),
i.e. slice timing, anatomical alignment, normalization, smoothing. Regions of Interests (ROI) are
also denoted by employing the main reference of each dataset. In addition, leave-one-subject-out

5
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Datasets

Table S1: Variables or Functions

Variable or Function Description
R The set of real numbers.
I The identity matrix.

i, j, ℓ,m, n, α, β, µ, τ The indices.
K The number of stimulus categories.
S The number of Subjects.
T The number of time points in unites of TRs (Time of Repetition).
V The number of voxels in the original representation space.

Vnew The number of features after applying the Artificial Neural Network (ANN).
C The number of layers in ANN.

U (m) The number of units in m-th intermediate layers of ANN.
ϵ The regularized constant.

X(ℓ) =
{
x
(ℓ)
mn

}
∈ RT×V The original neural activities for ℓ-th subject.

R(ℓ) HA or DHA mapping for ℓ-th subject.
θ(ℓ)=

{
W

(ℓ)
m , b(ℓ)

m , m=1:C
}

The parameters of ANN for ℓ-th subject.
h
(ℓ)
m = g(. . . ) The result of activation function for ℓ-th subject and m-th layer.

fℓ
(
X(ℓ);θ(ℓ)

)
= Y(ℓ) The cognitive features for ℓ-th subject after applying ANN.

G ∈ RT×Vnew The DHA template.
Q ∈ RVnew×Vnew An orthogonal matrix for mapping two different DHA template to each other.

fℓ
(
X(ℓ);θ(ℓ)

) SV D
= Ω(ℓ)Σ(ℓ)

(
Ψ(ℓ)

)⊤ The SVD decomposition of mapped cognitive features for ℓ-th subject.
Φ̃(ℓ) The covariance matrix for ℓ-th subject (just used in this document)
Φ(ℓ) The inverse of covariance matrix for ℓ-th subject (just used in this document)
P(ℓ) The projection of cognitive features for ℓ-th subject.
D(ℓ) The diagonal matrix used for decomposition of P(ℓ) for ℓ-th subject.

A = ÃÃ⊤ Sum of all projections and its Cholesky decomposition.
Λ =

{
λ1 . . . λT

}
Eigenvalues of A.

Z =
∑T

ℓ=1 λℓ Sum of eigenvalues of A.
η Learning rate.

∇θ(ℓ) The gradient of ANN parameters for ℓ-th subject.
γm Error of m-th iteration.

k1, k3, λ, ρ Convolutional Autoencoder (CAE) parameters.
tr() The trace function.

backprop() The back-propagation function.
g(x) = 1

1+exp(−x)
Sigmoid function.

g(x) = tanh(x) = exp(x)−exp(−x)
exp(x)+exp(−x)

Hyperbolic function.
g(x) = ln(1 + exp(x)) Rectified Linear Unit (ReLU).

Table S2: The datasets.

Title ID S K T V X Y Z Scanner TR TE
Mixed-gambles task DS005 48 2 240 450 53 63 52 S 3T 2 30
Visual Object Recognition DS105 71 8 121 1963 79 95 79 G 3T 2.5 30
Word and Object Processing DS107 98 4 164 932 53 63 52 S 3T 2 28
Auditory and Visual Oddball DS116 102 2 170 2532 53 63 40 P 3T 2 25
Multi-subject, multi-modal DS117 171 2 210 524 64 61 33 S 3T 2 30
Forrest Gump DS113 20 10 451 2400 160 160 36 S 7T 2.3 22
Raiders of the Lost Ark N/A 10 7 924 980 78 78 54 S 3T 3 30

S is the number of subject; K denotes the number of stimulus categories; T is the number of scans in unites of
TRs (Time of Repetition); V denotes the number of voxels in ROI; X, Y, Z are the size of 3D images; Scanners
include S=Siemens, G = General Electric, and P = Philips in 3 Tesla or 7 Tesla; TR is Time of Repetition in
millisecond; TE denotes Echo Time in second; Please see openfmri.org for more information.
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Simple Task Analysis: Accuracy of HA methods

Table 1: Simple Task Analysis: Accuracy of HA methods

↓Algorithms, Datasets→ DS005 DS105 DS107 DS116 DS117
ν-SVM 71.65±0.97 22.89±1.02 38.84±0.82 67.26±1.99 73.32±1.67
Hyperalignment (HA) 81.27±0.59 30.03±0.87 43.01±0.56 74.23±1.40 77.93±0.29
Regularized HA 83.06±0.36 32.62±0.52 46.82±0.37 78.71±0.76 84.22±0.44
Kernel HA 85.29±0.49 37.14±0.91 52.69±0.69 78.03±0.89 83.32±0.41
SVD-HA 90.82±1.23 40.21±0.83 59.54±0.99 81.56±0.54 95.62±0.83
Shared Response Model 91.26±0.34 48.77±0.94 64.11±0.37 83.31±0.73 95.01±0.64
SearchLight 90.21±0.61 49.86±0.4 64.07±0.98 82.32±0.28 94.96±0.24
Convolutional Autoencoder 94.25±0.76 54.52±0.80 72.16±0.43 91.49±0.67 95.92±0.67
Deep HA 97.92±0.82 60.39±0.68 73.05±0.63 90.28±0.71 97.99±0.94

Table 2: Simple Task Analysis: AUC of different HA methods

↓Algorithms, Datasets→ DS005 DS105 DS107 DS116 DS117
ν-SVM [17] 68.37±1.01 21.76±0.91 36.84±1.45 62.49±1.34 70.17±0.59
Hyperalignment (HA) 70.32±0.92 28.91±1.03 40.21±0.33 70.67±0.97 76.14±0.49
Regularized HA 82.22±0.42 30.35±0.39 43.63±0.61 76.34±0.45 81.54±0.92
Kernel HA 80.91±0.21 36.23±0.57 50.41±0.92 75.28±0.94 80.92±0.28
SVD-HA 88.54±0.71 37.61±0.62 57.54±0.31 78.66±0.82 92.14±0.42
Shared Response Model 90.23±0.74 44.48±0.75 62.41±0.72 79.20±0.98 93.65±0.93
SearchLight 89.79±0.25 47.32±0.92 61.84±0.32 80.63±0.81 93.26±0.72
Convolutional Autoencoder 91.24±0.61 52.16±0.63 72.33±0.79 87.53±0.72 91.49±0.33
Deep HA 96.91±0.82 59.57±0.32 70.23±0.92 89.93±0.24 96.13±0.32
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Complex Task Analysis
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Figure 1: Comparison of different HA algorithms on complex task datasets by using ranked voxels.

equal (V = Vnew) for all HA methods. As the first dataset, ‘Mixed-gambles task’ (DS005) includes
S = 48 subjects. It also contains K = 2 categories of risk tasks in the human brain, where the
chance of selection is 50/50. In this dataset, the best results for CAE is generated by following
parameters k1 = k3 = 20, ρ = 0.75, λ = 1 and for DHA by using ε = 10−8 and Hyperbolic
function. In addition, ROI is defined based on the original paper [17]. As the second dataset, ‘Visual
Object Recognition’ (DS105) includes S = 71 subjects. It also contains K = 8 categories of
visual stimuli, i.e. gray-scale images of faces, houses, cats, bottles, scissors, shoes, chairs, and
scrambles (nonsense patterns). In this dataset, the best results for CAE is generated by following
parameters k1 = k3 = 25, ρ = 0.9, λ = 5 and for DHA by using ε = 10−6 and Sigmoid func-
tion. Please see [1, 7] for more information. As the third dataset, ‘Word and Object Processing’
(DS107) includes S = 98 subjects. It contains K = 4 categories of visual stimuli, i.e. words,
objects, scrambles, consonants. In this dataset, the best results for CAE is generated by following
parameters k1 = k3 = 10, ρ = 0.5, λ = 10 and for DHA by using ε = 10−6 and ReLU function.
Please see [18] for more information. As the fourth dataset, ‘Multi-subject, multi-modal human
neuroimaging dataset’ (DS117) includes MEG and fMRI images for S = 171 subjects. This paper
just uses the fMRI images of this dataset. It also contains K = 2 categories of visual stimuli, i.e.
human faces, and scrambles. In this dataset, the best results for CAE is generated by following
parameters k1 = k3 = 20, ρ = 0.9, λ = 5 and for DHA by using ε = 10−8 and Sigmoid function.
Please see [19] for more information. The responses of voxels in the Ventral Cortex are analyzed
for these three datasets (DS105, DS107, DS117). As the last dataset, ‘Auditory and Visual Oddball
EEG-fMRI’ (DS116) includes EEG signals and fMRI images for S = 102 subjects. This paper only
employs the fMRI images of this dataset. It contains K = 2 categories of audio and visual stimuli,
including oddball tasks. In this dataset, the best results for CAE is generated by following parameters
k1 = k3 = 10, ρ = 0.75, λ = 1 and for DHA by using ε = 10−4 and ReLU function. In addition,
ROI is defined based on the original paper [20]. This paper also provides the technical information of
the employed datasets in the supplementary materials. Table 1 and 2 respectively demonstrate the
classification Accuracy and Area Under the ROC Curve (AUC) in percentage (%) for the predictors.
As these tables demonstrate, the performances of classification analysis without HA method are
significantly low. Further, the proposed algorithm has generated better performance in comparison
with other methods because it provided a better embedded space in order to align neural activities.

4.2 Complex Tasks Analysis

This section uses two fMRI datasets, which are related to watching movies. The numbers of original
and aligned features are considered equal (V = Vnew) for all HA methods. As the first dataset, ‘A
high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie’ (DS113)
includes the fMRI data of S = 18 subjects, who watched ‘Forrest Gump (1994)’ movie during
the experiment. This dataset provided by Open fMRI. In this dataset, the best results for CAE is
generated by following parameters k1 = k3 = 25, ρ = 0.9, λ = 10 and for DHA by using ε = 10−8

and Sigmoid function. Please see [7] for more information. As the second dataset, S = 10 subjects
watched ‘Raiders of the Lost Ark (1981)’, where whole brain volumes are 48. In this dataset, the best
results for CAE is generated by following parameters k1 = k3 = 15, ρ = 0.75, λ = 1 and for DHA
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Figure 2: Classification by using feature selection.
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Figure 3: Runtime Analysis

by using ε = 10−4 and Sigmoid function. Please see [3-5] for more information. In these two datasets,
the ROI is defined in the ventral temporal cortex (VT). Figure 1 depicts the generated results, where
the voxels in ROI are ranked by the method proposed in [1] based on their neurological priorities same
as previous studies [1, 4, 7, 9]. Then, the experiments are repeated by using the different number of
ranked voxels per hemisphere, i.e. in Forrest: [100, 200, 400, 600, 800, 1000, 1200], and in Raiders:
[70, 140, 210, 280, 350, 420, 490]. In addition, the empirical studies are reported by using the first
TRs = [100, 400, 800, 2000] in both datasets. Figure 1 shows that the DHA achieves superior
performance to other HA algorithms.

4.3 Classification analysis by using feature selection

In this section, the effect of features selection (Vnew < V ) on the performance of classification
methods will be discussed by using DS105 and DS107 datasets. Here, the performance of the
proposed method is compared with SVDHA [4], SRM [5], and CAE [6] as the state-of-the-art
HA techniques, which can apply feature selection before generating a classification model. Here,
multi-label ν-SVM [16] is used for generating the classification models after each of the mentioned
methods applied on preprocessed fMRI images for functional alignment. In addition, the setup of this
experiment is same as the previous sections (cross-validation, the best parameters, etc.). Figure 2
illustrates the performance of different methods by employing 100% to 60% of features. As depicted
in this figure, the proposed method has generated better performance in comparison with other
methods because it provides better feature representation in comparison with other techniques.

4.4 Runtime Analysis

In this section, the runtime of the proposed method is compared with the previous HA methods by
using DS105 and DS107 datasets. As mentioned before, all of the results in this experiment are
generated by a PC with certain specifications. Figure 3 illustrates the runtime of the mentioned
methods, where runtime of other methods are scaled based on the DHA (runtime of the proposed
method is considered as the unit). As depicted in this figure, CAE generated the worse runtime
because it concurrently employs modified versions of SRM and SL for functional alignment. Further,
SL also includes high time complexity because of the ensemble approach. By considering the
performance of the proposed method in the previous sections, it generates acceptable runtime. As
mentioned before, the proposed method employs rank-m SVD [10] as well as Incremental SVD [15],
which can significantly reduce the time complexity of the optimization procedure [10, 12].

5 Conclusion

This paper extended a deep approach for hyperalignment methods in order to provide accurate
functional alignment in multi-subject fMRI analysis. Deep Hyperalignment (DHA) can handle fMRI
datasets with nonlinearity, high-dimensionality (broad ROI), and a large number of subjects. We
have also illustrated how DHA can be used for post-alignment classification. DHA is parametric and
uses rank-m SVD and stochastic gradient descent for optimization. Therefore, DHA generates low-
runtime on large datasets, and DHA does not require the training data when the functional alignment
is computed for a new subject. Further, DHA is not limited by a restricted fixed representational space
because the kernel in DHA is a multi-layer neural network, which can separately implement any
nonlinear function for each subject to transfer the brain activities to a common space. Experimental
studies on multi-subject fMRI analysis confirm that the DHA method achieves superior performance
to other state-of-the-art HA algorithms. In the future, we will plan to employ DHA for improving the
performance of other techniques in fMRI analysis, e.g. Representational Similarity Analysis (RSA).
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by using ε = 10−4 and Sigmoid function. Please see [3-5] for more information. In these two datasets,
the ROI is defined in the ventral temporal cortex (VT). Figure 1 depicts the generated results, where
the voxels in ROI are ranked by the method proposed in [1] based on their neurological priorities same
as previous studies [1, 4, 7, 9]. Then, the experiments are repeated by using the different number of
ranked voxels per hemisphere, i.e. in Forrest: [100, 200, 400, 600, 800, 1000, 1200], and in Raiders:
[70, 140, 210, 280, 350, 420, 490]. In addition, the empirical studies are reported by using the first
TRs = [100, 400, 800, 2000] in both datasets. Figure 1 shows that the DHA achieves superior
performance to other HA algorithms.

4.3 Classification analysis by using feature selection

In this section, the effect of features selection (Vnew < V ) on the performance of classification
methods will be discussed by using DS105 and DS107 datasets. Here, the performance of the
proposed method is compared with SVDHA [4], SRM [5], and CAE [6] as the state-of-the-art
HA techniques, which can apply feature selection before generating a classification model. Here,
multi-label ν-SVM [16] is used for generating the classification models after each of the mentioned
methods applied on preprocessed fMRI images for functional alignment. In addition, the setup of this
experiment is same as the previous sections (cross-validation, the best parameters, etc.). Figure 2
illustrates the performance of different methods by employing 100% to 60% of features. As depicted
in this figure, the proposed method has generated better performance in comparison with other
methods because it provides better feature representation in comparison with other techniques.

4.4 Runtime Analysis

In this section, the runtime of the proposed method is compared with the previous HA methods by
using DS105 and DS107 datasets. As mentioned before, all of the results in this experiment are
generated by a PC with certain specifications. Figure 3 illustrates the runtime of the mentioned
methods, where runtime of other methods are scaled based on the DHA (runtime of the proposed
method is considered as the unit). As depicted in this figure, CAE generated the worse runtime
because it concurrently employs modified versions of SRM and SL for functional alignment. Further,
SL also includes high time complexity because of the ensemble approach. By considering the
performance of the proposed method in the previous sections, it generates acceptable runtime. As
mentioned before, the proposed method employs rank-m SVD [10] as well as Incremental SVD [15],
which can significantly reduce the time complexity of the optimization procedure [10, 12].

5 Conclusion

This paper extended a deep approach for hyperalignment methods in order to provide accurate
functional alignment in multi-subject fMRI analysis. Deep Hyperalignment (DHA) can handle fMRI
datasets with nonlinearity, high-dimensionality (broad ROI), and a large number of subjects. We
have also illustrated how DHA can be used for post-alignment classification. DHA is parametric and
uses rank-m SVD and stochastic gradient descent for optimization. Therefore, DHA generates low-
runtime on large datasets, and DHA does not require the training data when the functional alignment
is computed for a new subject. Further, DHA is not limited by a restricted fixed representational space
because the kernel in DHA is a multi-layer neural network, which can separately implement any
nonlinear function for each subject to transfer the brain activities to a common space. Experimental
studies on multi-subject fMRI analysis confirm that the DHA method achieves superior performance
to other state-of-the-art HA algorithms. In the future, we will plan to employ DHA for improving the
performance of other techniques in fMRI analysis, e.g. Representational Similarity Analysis (RSA).
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Visualizing Neural Activities on DS105
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Conclusion

Our knowledge from human brain is so limited.

In order to understand the human brain, we need to develop new
methods in Neuroscience, Psychology, Mathematics, and Computer
Science.

Not only can Artificial Intelligence use as a powerful tool for
understanding the human brain but also this understanding can be
employed reversely to develop AI tools, e.g. Deep Learning.
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easy fMRI Project

Open Source + Free + Python + SK-Learn + MPI + Tensorflow

https://easyfmri.gitlab.io/
https://easyfmri.github.io/

https://easyfmri.sourceforge.io/
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easy fMRI : DATA

Matlab + 40 dataset + 200 cognitive tasks + 1000 subjects

https://easydata.gitlab.io/
https://easyfmridata.github.io/

https://easyfmridata.sourceforge.io/
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Thank You
Q & A

For more details, contact:

myousefnezhad@outlook.com
https://myousefnezhad.gitlab.io/
https://myousefnezhad.github.io/

https://myousefnezhad.sourceforge.io/
https://ibrain.nuaa.edu.cn
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