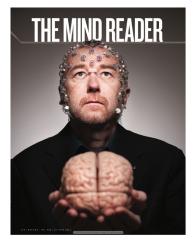
Analyzing Human Brain Patterns by using deep approaches

Muhammad (Tony) Yousefnezhad

College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics (NUAA)

Machine Learning, Optimization and Control (MLOC) 2018


Outline

Analyzing Brain Patterns

- 2 Hyperalignment
- 3 Deep Hyperalignment
- 4 Deep Hyperalignment: Optimization
- 5 Experiments
- 6 Conclusion

.∃ >

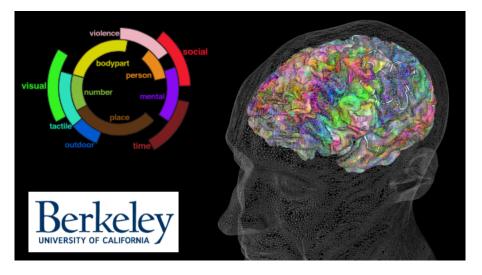
The Mind Reader (in theory)

Smith, Nature, 2013

Optogenetics

(日) (周) (三) (三)

Recovery Movies from Human Brain

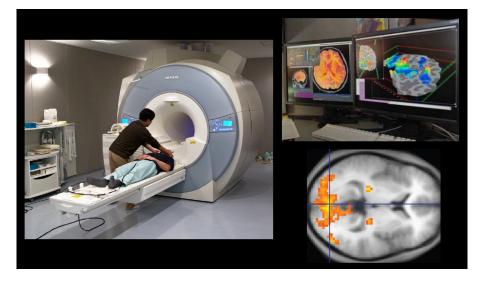


Nishimoto, Current Biology, 2011

• • • • • • • • • • • •

MLOC 2018 5 / 41

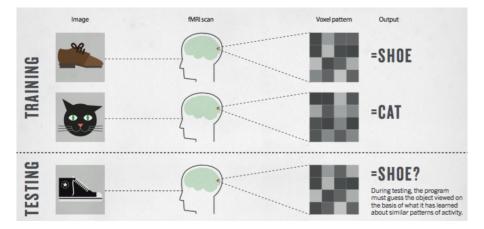
Semantic Maps



Huth, Nature, 2016

Muhammad (Tony) Yousefnezhad (NUAA)

MLOC 2018 6 / 41


functional Imaging: functional MRI (fMRI)

Analyzing Human Brain Patterns

- Prior to the discovery that **within-area patterns** of response in fMRI carried information that **afforded decoding of stimulus distinctions**.
- It was generally believed that the **spatial resolution of fMRI** allowed investigators to ask only which task or stimulus activated a region globally.
- Instead of asking what a regions function is, in terms of a single brain state associated with global activity, fMRI investigators can now ask what information is represented in a region, in terms of brain states associated with distinct patterns of activity, and how that information is encoded and organized.
- A wide range of open source fMRI datasets.

The Human Brain Decoding: Problem Definition

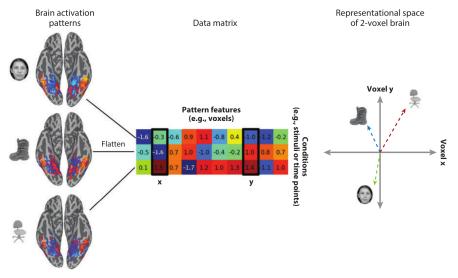
Smith, Nature, 2013

-

Image: Image:

Outline

1 Analyzing Brain Patterns

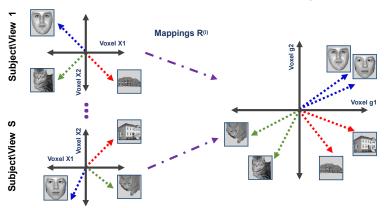

2 Hyperalignment

- 3 Deep Hyperalignment
- 4 Deep Hyperalignment: Optimization

5 Experiments

Representational Space: Example

Haxby, Annual Review Neuroscience, 2014


- 一司

MLOC 2018 11 / 41

Hyperalignment

Individual Brain Patterns X⁽ⁱ⁾

Shared Space G

- The main assumption in Hyperalignment is that the neural actives in different brains are noisy 'rotations' of a common space Haxby, Neuron, 2011.
- It can be formulated as extracting shared space from multi-view (multi-subject) data.

Classical Hyperalignment can be formulated by Generalized Canonical Correlation Analysis (CCA): Haxby, Neuron, 2011

$$\min_{\mathbf{R}^{(i)},\mathbf{G}} \sum_{i=1}^{S} \left\| \mathbf{X}^{(i)} \mathbf{R}^{(i)} - \mathbf{G} \right\|_{F}^{2}$$

subject to
$$\left(\mathbf{X}^{(\ell)}\mathbf{R}^{(\ell)}\right)^{\top}\mathbf{X}^{(\ell)}\mathbf{R}^{(\ell)} = \mathbf{I}$$

where the common space can be denoted by:

$$\mathbf{G} \in \mathbb{R}^{T imes V} = rac{1}{S} \sum_{j=1}^{S} \mathbf{X}^{(j)} \mathbf{R}^{(j)},$$

• $\mathbf{X}^{(\ell)} \in \mathbb{R}^{T \times V}$ denotes the neural activities, and $\mathbf{R}^{(\ell)} \in \mathbb{R}^{V \times V}$ is the mappings.

• RHA's Objective Function can be denoted as follows:

$$\min_{\mathbf{R}^{(i)},\mathbf{G}}\sum_{i=1}^{S}\left\|\mathbf{X}^{(i)}\mathbf{R}^{(i)}-\mathbf{G}\right\|_{F}^{2}$$

subject to
$$\left(\mathbf{R}^{(\ell)}
ight)^{ op} \left(\left(\mathbf{X}^{(\ell)}
ight)^{ op} \mathbf{X}^{(\ell)} + \epsilon \mathbf{I}
ight) \mathbf{R}^{(\ell)} = \mathbf{I}$$

- The common space: $\mathbf{G} = \frac{1}{5} \sum_{j=1}^{5} \mathbf{X}^{(j)} \mathbf{R}^{(j)}$
- Here, the regularization term ε can improve the stability of alignment by providing a better inverse of the covariance matrix for X⁽ⁱ⁾.

Xu, IEEE SSP, 2012

• KHA's Objective Function can be denoted as follows:

$$\min_{\mathbf{R}^{(i)},\mathbf{G}}\sum_{i=1}^{S}\left\|\mathbf{\Phi}(\mathbf{X}^{(i)})\mathbf{R}^{(i)}-\mathbf{G}\right\|_{F}^{2}$$

subject to
$$\left(\mathbf{\Phi}(\mathbf{X}^{(\ell)}) \mathbf{R}^{(\ell)}
ight)^{ op} \mathbf{\Phi}(\mathbf{X}^{(\ell)}) \mathbf{R}^{(\ell)} = \mathbf{I}$$

• The common space: $\mathbf{G} = \frac{1}{5} \sum_{j=1}^{5} \mathbf{\Phi}(\mathbf{X}^{(j)}) \mathbf{R}^{(j)}$

- Here, $\Phi(.)$ is a standard kernel function that can handle nonlinear datasets.
- However, classical kernel functions are limited by a restricted fixed representational space.

Lorbert, NIPS, 2012

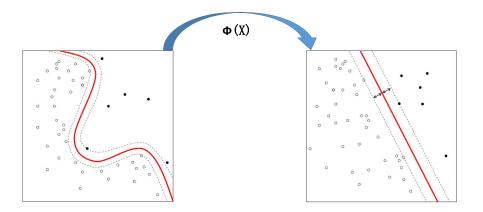
Outline

Analyzing Brain Patterns

2 Hyperalignment

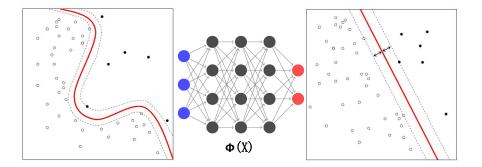
Oeep Hyperalignment

4 Deep Hyperalignment: Optimization

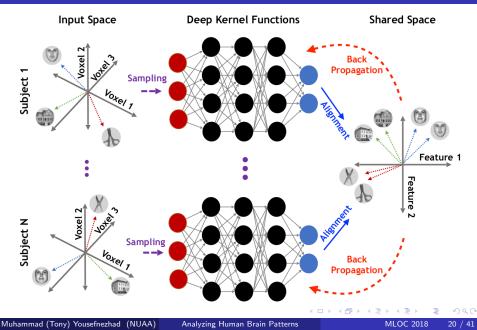

5 Experiments

6 Conclusion

There are some long standing challenges for calculating accurate functional alignments:


- High Dimensionality
- Sparsity
- Nonlinear Features
- Large Number of Subjects

Kernel Function



э

Deep Kernel Function

Deep Hyperalignment (DHA)

Deep Hyperalignment: Objective Function

• DHA's Objective Function can be denoted as follows:

$$\min_{\mathbf{G},\mathbf{R}^{(i)},\theta^{(i)}}\sum_{i=1}^{S} \left\|\mathbf{G}-f_{i}\left(\mathbf{X}^{(i)};\theta^{(i)}\right)\mathbf{R}^{(i)}\right\|_{F}^{2}$$

subject to
$$\left(\mathbf{R}^{(\ell)}\right)^{\top} \left(\left(f_{\ell}(\mathbf{X}^{(\ell)}; \theta^{(\ell)}) \right)^{\top} f_{\ell}(\mathbf{X}^{(\ell)}; \theta^{(\ell)}) + \epsilon \mathbf{I} \right) \mathbf{R}^{(\ell)} = \mathbf{I}$$

- The common space: $\mathbf{G} = \frac{1}{5} \sum_{j=1}^{5} f_j (\mathbf{X}^{(j)}; \theta^{(j)}) \mathbf{R}^{(j)}$
- Here, f_{ℓ} is the deep neural network such as:

$$f_{\ell}(\mathbf{X}^{(\ell)};\theta^{(\ell)}) = \max\left(\mathbf{h}_{C}^{(\ell)}, T, V_{new}\right),$$
$$\mathbf{h}_{m}^{(\ell)} = g\left(\mathbf{W}_{m}^{(\ell)}\mathbf{h}_{m-1}^{(\ell)} + \mathbf{b}_{m}^{(\ell)}\right)$$

where $\mathbf{h}_1^{(\ell)} = \operatorname{vec}(\mathbf{X}^{(\ell)})$ and m = 2:C.

Muhammad (Tony) Yousefnezhad (NUAA)

Outline

- Analyzing Brain Patterns
- 2 Hyperalignment
- 3 Deep Hyperalignment
- Deep Hyperalignment: Optimization
 - 5 Experiments
 - 6 Conclusion

• Firstly, we employ the rank-*m* SVD as follows:

$$f_\ellig({\sf X}^{(\ell)}; heta^{(\ell)}ig) \stackrel{SVD}{=} {\sf \Omega}^{(\ell)} {\sf \Sigma}^{(\ell)}ig({f \Psi}^{(\ell)}ig)^ op, \qquad \ell=1{:}S$$

• Then, projection matrix can be calculated as follows:

$$\begin{aligned} \mathbf{P}^{(\ell)} &= f_{\ell} \left(\mathbf{X}^{(\ell)}; \theta^{(\ell)} \right) \left(\left(f_{\ell} \left(\mathbf{X}^{(\ell)}; \theta^{(\ell)} \right) \right)^{\top} f_{\ell} \left(\mathbf{X}^{(\ell)}; \theta^{(\ell)} \right) + \epsilon \mathbf{I} \right)^{-1} \left(f_{\ell} \left(\mathbf{X}^{(\ell)}; \theta^{(\ell)} \right) \right)^{\top} \\ &= \mathbf{\Omega}^{(\ell)} \left(\mathbf{\Sigma}^{(\ell)} \right)^{\top} \left(\mathbf{\Sigma}^{(\ell)} \left(\mathbf{\Sigma}^{(\ell)} \right)^{\top} + \epsilon \mathbf{I} \right)^{-1} \mathbf{\Sigma}^{(\ell)} \left(\mathbf{\Omega}^{(\ell)} \right)^{\top} = \mathbf{\Omega}^{(\ell)} \mathbf{D}^{(\ell)} \left(\mathbf{\Omega}^{(\ell)} \mathbf{D}^{(\ell)} \right)^{\top} \end{aligned}$$

• Here, we have a diagonal product $\mathbf{D}^{(\ell)}(\mathbf{D}^{(\ell)})^{\top} = (\mathbf{\Sigma}^{(\ell)})^{\top} (\mathbf{\Sigma}^{(\ell)}(\mathbf{\Sigma}^{(\ell)})^{\top} + \epsilon \mathbf{I})^{-1} \mathbf{\Sigma}^{(\ell)}$. Thus, calculating the inverse of matrix is easy!

Yousefnezhad, NIPS, 2017

Deep Hyperalignment: Optimization (Step 1)

Theorem

By considering fixed mapping functions $\mathbf{R}^{(i)}$ and fixed network parameters $\theta^{(i)}$, DHA's Objective Function can be reformulated as follows:

$$\min_{\mathbf{G},\mathbf{R}^{(i)},\theta^{(i)}} \sum_{i=1}^{S} \left\| \mathbf{G} - f_i \left(\mathbf{X}^{(i)}; \theta^{(i)} \right) \mathbf{R}^{(i)} \right\| \equiv \max_{\mathbf{G}} \left(tr \left(\mathbf{G}^{\top} \mathbf{A} \mathbf{G} \right) \right)$$

where the sum of projection matrices can be calculated as follows:

$$\mathbf{A} = \sum_{i=1}^{S} \mathbf{P}^{(i)} = \widetilde{\mathbf{A}} \widetilde{\mathbf{A}}^{\top}, \quad \text{where} \quad \widetilde{\mathbf{A}} \in \mathbb{R}^{T \times mS} = \left[\mathbf{\Omega}^{(1)} \mathbf{D}^{(1)} \dots \mathbf{\Omega}^{(S)} \mathbf{D}^{(S)} \right]$$

Theorem

By using Incremental SVD, the shared space G can be calculated as follows, where $\mathbf{\Lambda} = \{\lambda_1 \dots \lambda_T\}$ is the eigenvalues of \mathbf{A} :

$$\mathsf{A}\mathsf{G} = \mathsf{G}\mathsf{A} \implies \widetilde{\mathsf{A}} = \mathsf{G}\widetilde{\mathsf{\Sigma}}\widetilde{\mathsf{\Psi}}^{ op}$$

Muhammad (Tony) Yousefnezhad (NUAA)

Theorem

By considering fixed share space **G** and fixed network parameters $\theta^{(i)}$, DHA's mapping functions can be calculated as follows:

$$\mathbf{R}^{(\ell)} = \left(\left(f_{\ell}(\mathbf{X}^{(\ell)}; \theta^{(\ell)}) \right)^{\top} f_{\ell}(\mathbf{X}^{(\ell)}; \theta^{(\ell)}) + \epsilon \mathbf{I} \right)^{-1} \left(f_{\ell}(\mathbf{X}^{(\ell)}; \theta^{(\ell)}) \right)^{\top} \mathbf{G}$$

Theorem

By considering fixed share space **G** and fixed mapping functions $\mathbf{R}^{(i)}$, we use back-propagation algorithm for seeking an optimized parameters for the deep network as follows:

$$\frac{\partial \mathsf{Z}}{\partial f_{\ell}(\mathsf{X}^{(\ell)};\theta^{(\ell)})} = 2\mathsf{R}^{(\ell)}\mathsf{G}^{\top} - 2\mathsf{R}^{(\ell)}(\mathsf{R}^{(\ell)})^{\top} \left(f_{\ell}(\mathsf{X}^{(\ell)};\theta^{(\ell)})\right)^{\top}$$

where Z is the sum of the eigenvalues of A:

$$\mathsf{Z} = \sum_{\ell=1}^{\mathcal{T}} \lambda_\ell$$

Deep Hyperalignment: Algorithm

Algorithm 1 Deep Hyperalignment (DHA)

Input: Data $\mathbf{X}^{(i)}$, i = 1:S, Regularized parameter ϵ , Number of layers C, Number of units $U^{(m)}$ for m = 2:C, HA template $\widehat{\mathbf{G}}$ for testing phase (default \emptyset), Learning rate η (default 10^{-4} [13]). Output: DHA mappings $\mathbf{R}^{(\ell)}$ and parameters $\theta^{(\ell)}$, HA template \mathbf{G} just from training phase Method:

01. Initialize iteration counter: $m \leftarrow 1$ and $\theta^{(\ell)} \sim \mathcal{N}(0, 1)$ for $\ell = 1:S$.

02. Construct $f_{\ell}(\mathbf{X}^{(\ell)}; \theta^{(\ell)})$ based on (4) and (5) by using $\theta^{(\ell)}, C, U^{(m)}$ for $\ell = 1:S$.

03. IF $(\hat{\mathbf{G}} = \emptyset)$ THEN % The first step of DHA: fixed $\theta^{(\ell)}$ and calculating \mathbf{G} and $\mathbf{R}^{(\ell)} \downarrow$

- 04. Generate A by using (8) and (10).
- 05. Calculate G by applying Incremental SVD [15] to $\widetilde{\mathbf{A}} = \mathbf{G} \widetilde{\boldsymbol{\Sigma}} \widetilde{\boldsymbol{\Psi}}^{\top}$.
- 06. ELSE
- 07. $\mathbf{G} = \widehat{\mathbf{G}}.$
- 08. END IF

09. Calculate mappings $\mathbf{R}^{(\ell)}$, $\ell = 1:S$ by using (12).

10. Estimate error of iteration $\gamma_m = \sum_{i=1}^{S} \sum_{j=i+1}^{S} \left\| f_i (\mathbf{X}^{(i)}; \theta^{(i)}) \mathbf{R}^{(i)} - f_j (\mathbf{X}^{(j)}; \theta^{(j)}) \mathbf{R}^{(j)} \right\|_F^2$. 11. IF ((m > 3) and $(\gamma_m \ge \gamma_{m-1} \ge \gamma_{m-2})$ THEN % This is the finishing condition.

- 12. **Return** calculated **G**, $\mathbf{R}^{(\ell)}$, $\theta^{(\ell)}(\ell = 1:S)$ related to (m-2)-th iteration.
- 13. **END IF** % The second step of DHA: fixed **G** and $\mathbf{R}^{(\ell)}$ and updating $\theta^{(\ell)} \downarrow$

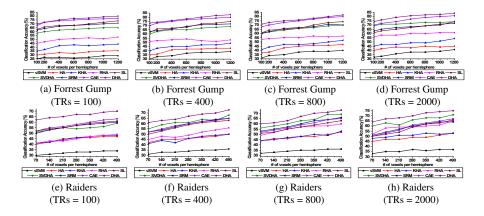
14.
$$\nabla \theta^{(\ell)} \leftarrow \text{backprop}\left(\frac{\partial \mathbf{Z}}{\partial f_{\ell}}(\mathbf{x}^{(\ell)};\theta^{(\ell)}), \theta^{(\ell)}\right)$$
 by using (13) for $\ell = 1:S$.

- 15. Update $\theta^{(\ell)} \leftarrow \theta^{(\ell)} \eta \nabla \theta^{(\ell)}$ for $\ell = 1:S$ and then $m \leftarrow m + 1$
- 16. SAVE all DHA parameters related to this iteration and GO TO Line 02.

Outline

- Analyzing Brain Patterns
- 2 Hyperalignment
- 3 Deep Hyperalignment
- 4 Deep Hyperalignment: Optimization
- 5 Experiments

Title	ID	S	Κ	Т	V	Х	Y	Ζ	Scanner	TR	TE
Mixed-gambles task	DS005	48	2	240	450	53	63	52	S 3T	2	30
Visual Object Recognition	DS105	71	8	121	1963	79	95	79	G 3T	2.5	30
Word and Object Processing	DS107	98	4	164	932	53	63	52	S 3T	2	28
Auditory and Visual Oddball	DS116	102	2	170	2532	53	63	40	P 3T	2	25
Multi-subject, multi-modal	DS117	171	2	210	524	64	61	33	S 3T	2	30
Forrest Gump	DS113	20	10	451	2400	160	160	36	S 7T	2.3	22
Raiders of the Lost Ark	N/A	10	7	924	980	78	78	54	S 3T	3	30

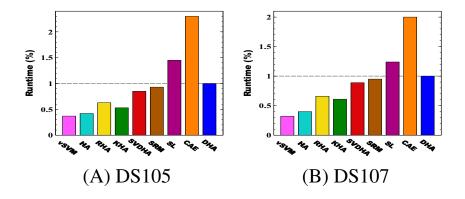

S is the number of subject; K denotes the number of stimulus categories; T is the number of scans in unites of TRs (Time of Repetition); V denotes the number of voxels in ROI; X, Y, Z are the size of 3D images; Scanners include S=Siemens, G = General Electric, and P = Philips in 3 Tesla or 7 Tesla; TR is Time of Repetition in millisecond; TE denotes Echo Time in second; Please see *openfinri.org* for more information.

\downarrow Algorithms, Datasets \rightarrow	DS005	DS105	DS107	DS116	DS117
ν -SVM	$71.65 {\pm} 0.97$	22.89 ± 1.02	$38.84{\pm}0.82$	67.26 ± 1.99	73.32 ± 1.67
Hyperalignment (HA)	$81.27 {\pm} 0.59$	$30.03 {\pm} 0.87$	$43.01 {\pm} 0.56$	74.23 ± 1.40	$77.93 {\pm} 0.29$
Regularized HA	$83.06 {\pm} 0.36$	32.62 ± 0.52	$46.82 {\pm} 0.37$	$78.71 {\pm} 0.76$	84.22 ± 0.44
Kernel HA	$85.29 {\pm} 0.49$	$37.14 {\pm} 0.91$	$52.69 {\pm} 0.69$	$78.03 {\pm} 0.89$	$83.32 {\pm} 0.41$
SVD-HA	90.82 ± 1.23	40.21 ± 0.83	$59.54 {\pm} 0.99$	$81.56 {\pm} 0.54$	$95.62 {\pm} 0.83$
Shared Response Model	$91.26 {\pm} 0.34$	48.77 ± 0.94	$64.11 {\pm} 0.37$	$83.31 {\pm} 0.73$	$95.01 {\pm} 0.64$
SearchLight	$90.21 {\pm} 0.61$	$49.86 {\pm} 0.4$	$64.07 {\pm} 0.98$	$82.32 {\pm} 0.28$	$94.96 {\pm} 0.24$
Convolutional Autoencoder	$94.25 {\pm} 0.76$	54.52 ± 0.80	$72.16 {\pm} 0.43$	$91.49{\pm}0.67$	$95.92{\pm}0.67$
Deep HA	$97.92{\pm}0.82$	$60.39{\pm}0.68$	$73.05{\pm}0.63$	$90.28 {\pm} 0.71$	$97.99{\pm}0.94$

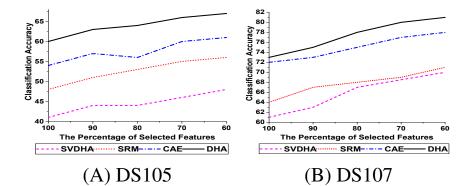
Simple Task Analysis: AUC of HA methods

\downarrow Algorithms, Datasets \rightarrow	DS005	DS105	DS107	DS116	DS117
ν-SVM [17]	$68.37 {\pm} 1.01$	$21.76 {\pm} 0.91$	$36.84{\pm}1.45$	$62.49 {\pm} 1.34$	$70.17 {\pm} 0.59$
Hyperalignment (HA)	$70.32 {\pm} 0.92$	$28.91{\pm}1.03$	40.21 ± 0.33	$70.67 {\pm} 0.97$	$76.14 {\pm} 0.49$
Regularized HA	82.22 ± 0.42	$30.35 {\pm} 0.39$	$43.63 {\pm} 0.61$	$76.34{\pm}0.45$	$81.54 {\pm} 0.92$
Kernel HA	$80.91 {\pm} 0.21$	$36.23 {\pm} 0.57$	$50.41 {\pm} 0.92$	$75.28 {\pm} 0.94$	$80.92 {\pm} 0.28$
SVD-HA	$88.54 {\pm} 0.71$	$37.61 {\pm} 0.62$	$57.54 {\pm} 0.31$	$78.66 {\pm} 0.82$	$92.14 {\pm} 0.42$
Shared Response Model	90.23 ± 0.74	$44.48 {\pm} 0.75$	$62.41 {\pm} 0.72$	$79.20{\pm}0.98$	$93.65 {\pm} 0.93$
SearchLight	$89.79 {\pm} 0.25$	$47.32 {\pm} 0.92$	$61.84{\pm}0.32$	$80.63 {\pm} 0.81$	$93.26 {\pm} 0.72$
Convolutional Autoencoder	$91.24 {\pm} 0.61$	$52.16 {\pm} 0.63$	$72.33{\pm}0.79$	$87.53 {\pm} 0.72$	$91.49 {\pm} 0.33$
Deep HA	$96.91{\pm}0.82$	$59.57{\pm}0.32$	$70.23 {\pm} 0.92$	$89.93{\pm}0.24$	$96.13{\pm}0.32$

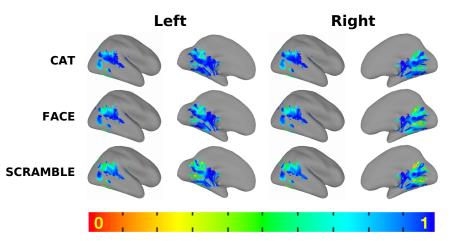
Complex Task Analysis



Muhammad (Tony) Yousefnezhad (NUAA) Anal

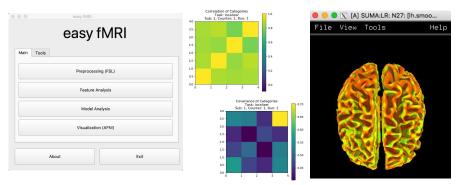

MLOC 2018 32 / 41

(日) (同) (三) (三)


Runtime Analysis

Alignment by selecting features

Visualizing Neural Activities on DS105



Outline

- Our knowledge from human brain is so limited.
- In order to understand the human brain, we need to develop new methods in Neuroscience, Psychology, Mathematics, and Computer Science.
- Not only can Artificial Intelligence use as a powerful tool for understanding the human brain but also this understanding can be employed reversely to develop AI tools, **e.g. Deep Learning**.

easy fMRI Project

Open Source + Free + Python + SK-Learn + MPI + Tensorflow

https://easyfmri.gitlab.io/ https://easyfmri.github.io/ https://easyfmri.sourceforge.io/

- 一司

easy fMRI : DATA

Matlab + 40 dataset + 200 cognitive tasks + 1000 subjects

🊸 source forg	Browse	Blog	Deals He	lp Create		Me▼	32			
Articles	Cloud Storage	Business VoIP	Internet Speed Test			♥ f G	In Search for	softwa	re or solu	tions Q
eter (2 hours have been dear of the easy form idata Brought to you by: ingrease free had										
Summary	les Review	vs Support	Code	Tickets	Wiki	Discussion	Admin		Add Ne	N
Add File Add F	Folder	Technicians But	ttons & Badges Gitt	lub Integration						
Name 🗢				Modified 🗘	Size 🖨		Downloads / Wee	к Ф		
J Parent folder										
DS232				2018-04-27				0	Ø	1
DS107				2018-04-27				0	Ø	10
CD5105				2018-04-27				0	Ø	W
D5231				2018-02-02				0	Ø	Ŵ
D5229				2018-02-02				0	Ø	W
C DS205				2018-02-02				0	Ø	W
CD5203				2018-02-02				0	Ø	ŵ
CDD\$170				2018-02-02				0	Ø	the second secon

https://easydata.gitlab.io/ https://easyfmridata.github.io/ https://easyfmridata.sourceforge.io/

3 1 4

- ∢ ศ⊒ ▶

Publications

- Muhammad Yousefnezhad and Daoqiang Zhang. 'Deep Hyperalignment', NIPS, 2017.
- Muhammad Yousefnezhad and Daoqiang Zhang. 'Local Discriminant Hyperalignment for Multi-Subject fMRI Data Alignment', AAAI, 2017.
- Muhammad Yousefnezhad and Daoqiang Zhang. 'Multi-Region Neural Representation: A novel model for decoding visual stimuli in human brains', SIAM SDM, 2017.
- **Muhammad Yousefnezhad** and Daoqiang Zhang. 'Decoding visual stimuli in human brain by using Anatomical Pattern Analysis on fMRI images', BICS, China, 2016.
- Muhammad Yousefnezhad and Daoqiang Zhang. 'Weighted spectral cluster ensemble', ICDM, 2015.
- **Muhammad Yousefnezhad** and Daoqiang Zhang. 'Anatomical Pattern Analysis for decoding visual stimuli in human brains'. Cognitive Computation, 2017.
- **Muhammad Yousefnezhad**, Sheng-Jun Huang, and Daoqiang Zhang. 'WoCE: a framework for clustering ensemble by exploiting the wisdom of Crowds theory', IEEE Transactions on Cybernetics.
- Muhammad Yousefnezhad, Ali Reihanian, Daoqiang Zhang, Behrouz Minaei-Bidgoli 'A new selection strategy for selective cluster ensemble based on Diversity and Independency', Engineering Applications of Artificial Intelligence.
- Tonglin Xu, **Muhammad Yousefnezhad**, Daoqiang Zhang. 'Gradient Hyperalignment for multi-subject fMRI data alignment', PRICAI, China, 2018.

Thank You Q & A

For more details, contact:

myousefnezhad@outlook.com https://myousefnezhad.gitlab.io/ https://myousefnezhad.github.io/ https://myousefnezhad.sourceforge.io/ https://ibrain.nuaa.edu.cn